
Agent-Based Modelling and
Simulation with NetLogo

 Day 1: Session 3

NetLogo programming language

 2

Session 3 Outline

● Variables, procedures and reporters

● Basic operators.

● Variable scopes and code contexts.

● Control flow and logic.

● NetLogo dictionary: testing built-in commands.

 3

Variables

● Variables are places to store values such as
numbers.

● Variables can be:
– Global variables: there is only one value for the

variable, and every agent can access it.

– Local variables: defined and used only in the
context of a particular procedure.

– Agent variables: Each turtle has its own value for
every turtle variable. The same goes for patches
and links. Think of it as agent properties.

 4

Variable values

● Any variable can tipicaly receive any value type
at any given time except global variables that
come from GUI components (sliders, etc)

● In NetLogo, variable values can be of the
following types:
– Numbers: 1, -2, 0.5, -0.1235

– Strings: “xpto”, “a”, “123xpto”
– Boolean: true, false

– Agents: turtle 1, patch 0 0, link 0, one-of turtles

– Agentsets: turtles, patches, n-of turtles, n-of links

– Lists: [1 2 3 4], list 1 2, (list 1 2 3 4 5 6)

 5

Creating variables
● Global variables:

– adding a switch, slider, chooser, or input box.

– using globals[variable-name variable-name2] at the
beginning of the code.

● Local variables:
– using the let command like: let variable 0
– if you define a variable at the top of a procedure it

exists only inside the procedure.
– if you define a variable inside a set of square

brackets for example inside an ask command it
exists only inside those brackets.

– This is what we call the scope of a variable.

 6

Creating agent variables

● Using the command turtles-own, patches-own
or links-own, for example: turtles-own
[energy speed].

● Note: agents already possess some built-in
variables such as color, who (turtle id), xcor,
ycor, etc

 7

Setting variables

● You can set variable values by using the set command: set variable-name
value

● You can set global variables anywhere in the code as these can be
accessed by any agent.

● Local variables are only accessible inside the procedures or code blocks
where they where defined with let.

● Agent variables can be read outside an agent with the of command:
[color] of one-of turtles.

● Agent variables can only be set by the agents they belong to with ask
(inside an agent context this is).

 8

Procedures and Reporters
● Procedure: executes a finite set of

instructions and exists the procedure. Defined
with:

● Reporter: same as a procedure but returns a
value to the point where it was called. Defined
with:

 9

Procedures and Reporters with
Parameters

● All the procedures and reporters may receive
parameters being defined as follows:

● A reporter or procedure can then be called
anywhere in the code using its name and
passing the necessary parameters:

 10

Basic operators

● Arithmetic infix operators:

+, *, -, /, ^, <, >, =, !=, <=, >=
● They all take two inputs except except for the

definition of negative numbers for which you
have to add parentesis (- n)

● For other operations check the NetLogo
dictionary: sqrt, abs, acos, asin, atan, sin,
cos, exp.

 11

Variable scopes and code contexts.
● Parameters are passed by value and treated

as local variables inside a procedure:

● Result for calling scopes1?

 12

More Scopes

 13

Control Flow and logic

● Instructions that define the way the program instructions
are executed.

● Already seen to define procedures and reporters: ask,
to, to-report, end

● conditional control flow: if, if-else, ifelse-value

● logic expressions: and, or, not, xor

 14

Conditional Expressions

if:

if boolean-expression [

set of instructions

]

ifelse:

ifelse boolean-expression[

set of instructions

][

set of instructions

]

 15

Boolean expressions

● An expression that combines boolean values
with logical operators: and, or, not, xor

● Example: p1 and p2 and not p3

 16

Examples

let p1 true
let p2 false

if p1 and p2 [
 ask turtles [show "hello"]
]

ask turtles with [color = red and not energy > 50][
 show "hello"
]

ask turtles with [[pcolor] of patch-here = black and [food] of patch-here > 0][
show "hello"

]

ask turtles [
if [pcolor] of patch-here = black and [food] of patch-here > 0 [

show “hello”
]

]

 17

Exercise

● Create a simple NetLogo model:
– A set of n turtles

– A set of n patches with food

– Turtles have energy

– Turtles move in random directions

– Moving consumes energy

– Stepping on food patches recharges energy

– If a turtle runs out of energy, it dies

 18

Next Session

● Re-visiting and building a model of residential
segregation from scratch.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

