Agent-Based Modelling and
Simulation with NetLogo

Day 1: Session 3

NetLogo programming language



Session 3 Outline

» Variables, procedures and reporters
* Basic operators.

» Variable scopes and code contexts.
» Control flow and logic.

* NetLogo dictionary: testing built-in commands.

2



Variables

» Variables are places to store values such as
numbers.

e Variables can be:

- Global variables: there is only one value for the
variable, and every agent can access it.

- Local variables: defined and used only in the
context of a particular procedure.

- Agent variables: Each turtle has its own value for
every turtle variable. The same goes for patches
and links. Think of it as agent properties.



Variable values

* Any variable can tipicaly receive any value type
at any given time except global variables that
come from GUI components (sliders, etc)

* In NetLogo, variable values can be of the
following types:

- Numbers: 1, -2, 0.5, -0.1235

- Strings: “xpto”, “a”, “123xpto”

- Boolean: true, false

- Agents: turtle 1, patch 0 O, link O, one-of turtles

- Agentsets: turtles, patches, n-of turtles, n-of links
- Lists: [1234],list12,(list1234506)



Creating variables

 Global variables:

- adding a switch, slider, chooser, or input box.

- using globals|variable-name variable-name?2] at the
beginning of the code.

 Local variables:

- using the let command like: let variable O

- If you define a variable at the top of a procedure it
exists only inside the procedure.

- If you define a variable inside a set of square
brackets for example inside an ask command it
exists only inside those brackets.

- This Is what we call the scope of a variable.

5



Creating agent variables

* Using the command turtles-own, patches-own
or links-own, for example: turtles-own

[energy speed].

* Note: agents already possess some built-in
variables such as color, who (turtle id), xcor,

ycor, etc



Setting variables

You can set variable values by using the set command: set variable-name
value

You can set global variables anywhere in the code as these can be
accessed by any agent.

Local variables are only accessible inside the procedures or code blocks
where they where defined with let.

Agent variables can be read outside an agent with the of command:
[color] of one-of turtles.

Agent variables can only be set by the agents they belong to with ask
(inside an agent context this is).



Procedures and Reporters

e Procedure: executes a finite set of
Instructions and exists the procedure. Defined

with:
to procedure-name
end

 Reporter: same as a procedure but returns a
value to the point where it was called. Defined

with:
;reporter that reports the value ©
to-report reporter-name
report ©
end|



Procedures and Reporters with
Parameters

» All the procedures and reporters may receive

parameters being defined as follows:
sreports the sum of two parameterﬂ
to-report report-sum [numl numz]

report numl + numZ
end

* Areporter or procedure can then be called
anywhere In the code using its name and
passing the necessary parameters:

'show the sum of two numbers
let result report-sum 1 2
show result



Basic operators

* Arithmetic Infix operators:
+, ¥, - I’ A! <’ >s =, !=’ <=1 >=

* They all take two inputs except except for the
definition of negative numbers for which you
nave to add parentesis (- n)

* For other operations check the NetLogo
dictionary: sqrt, abs, acos, asin, atan, sin,
COsS, exp.

10



Variable scopes and code contexts.

 Parameters are passed by value and treated
as local variables inside a procedure:

;A couple of procedures to explaln scopes
to scopesl

let param ©

ScopesZ param

show (word "param inside scopesl: " param) |
end

to scopes2 [param]
;param 1s wvislible only i1nside this procedure
set param param + 1

show (word "param inside scopesZ: " param)
end

* Result for calling scopesl?

ohserver> scopesl
observer:; "param 1nside scopes2: 1"
observer:; "param 1nside scopesl: 0"

11



More Scopes

;A couple of procedures to explore scopes an ask blocks
to scopel-turtles

let value ©

ask turtles|

set value value + 1

]

show value
end

to scope2-turtles
let value O
ask turtles [scope3-turtles]
show value

end

to scope3-turtles
; set value value + 1 ;nothing named value 1s defined in the scope of this procedure

end



Control Flow and logic

Instructions that define the way the program instructions
are executed.

Already seen to define procedures and reporters: ask,
to, to-report, end

conditional control flow: if, if-else, Ifelse-value

logic expressions: and, or, not, xor

13



Conditional Expressions

If:
If boolean-expression |
set of instructions

]

iIfelse:

Ifelse boolean-expression|
set of instructions

|

set of instructions

]

14



Boolean expressions

* An expression that combines boolean values
with logical operators: and, or, not, xor

« Example: pl and p2 and not p3

15



Examples

let p1 true
let p2 false

if p1 and p2 [
ask turtles [show "hello"]
]

ask turtles with [color = red and not energy > 50][
show "hello"
]

ask turtles with [[pcolor] of patch-here = black and [food] of patch-here > Q][
show "hello"
]

ask turtles [
if [pcolor] of patch-here = black and [food] of patch-here > 0 |
show “hello”
]




Exercise

* Create a simple NetLogo model:

A set of n turtles

A set of n patches with food

Turtles have energy

Turtles move Iin random directions

Moving consumes energy

Stepping on food patches recharges energy
If a turtle runs out of energy, it dies

17



Next Session

e Re-visiting and building a model of residential
segregation from scratch.

18



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

