Agent-Based Modelling and Simulation with NetLogo

Day 2: Session 5

Plotting and batch simulations

Session 5 Outline

- Creating model reporters.
- Plotting on NetLogo.
- Model parameter space.
- Designing simulation experiments.
- NetLogo behaviour space & batch simulation.

Creating model reporters

• Measurements about values you want to extract from a model.

• Examples:

- Percentage of agents that execute a specific behaviour.
- Number of agents with a given property.
- Distribution of a particular agent property.
- The reporters can be used by plots and behaviour space to export data about your model.

Plotting in NetLogo

• **Plots** can be created using the NetLogo interface builder.

• Each plot contains a number of pens.

• Each pen draws lines, points or bars in the plots and can be configured by edditing the plot in your model interface.

Updating Plots in NetLogo

- Each pen is associated with a command:
 - plot value
 - histogram list

• Example:

plot count turtles with [color = blue] histogram [age] of agents

Note: using the command **of** with an Agentset (agents, turtles, or patches, etc) results in a list of values.

Updating Plots in NetLogo

- The plots in a NetLogo model are update automatically with the tick command.
- This means that each time **tick** is called the plots run the commands in each **pen**.
- To use automatic plotting in your model you need to use the following configuration:

```
to setup
clear-all
...
reset-ticks
end
to go
...
tick
end
```

Exercise: segregation with plots

• Try to add a plot to the previous segregation model.

• Suggestions:

- Plot the evolution of "happyness" over time (number of agents happy with their neighbourhood).
- Plot the average neighbourhood similarity ratio over time (sum similar neighbours / sum total neighbours)
- **Starting point:** last segregation model developed.
- **Solution:** "segregation plots.nlogo"

Result

ommand Center

Collecting Results

• Export:

(File > Export)

- World View: as image
- Plots: as .csv file
- Output: saves the text from the text output area.
- Behaviour Space

(Tools > BehaviourSpace)

- allows for the configuration of multiple simulation runs by sweeping accross different parameter values.
- The results are exported to a .csv file

Behaviour Space

$\succ \odot$	Expe	eriment	\odot \odot \otimes
Experiment i	name experiment		
Vary variable	es as follows (note brack	ets and quotation marks):	
["populati ["tolerand	on" 2500] ce" 0.15]		4
Either list value ["my-slider" 1 2 or specify start, ["my-slider" [0] to go from 0, 1 a You may also va	s to use, for example: 7 8] increment, and end, for examp 10]] (note additional brackets at a time, to 10. ry max-pxcor, min-pxcor, max-p	le:) ycor, min-pycor, random-seed.	
Repetitions 1			
run each combi	nation this many times		
Measure rur	is using these reporters	1	
count tur1	iles		
one reporter pe across multiple	r line; you may not split a repor lines	ter	
if unchecked, ru	ins are measured only when the	y are over	
Setup comm	ands:	Go commands:	
setup	A L	go	A
Stop cone the run stops if	dition: this reporter becomes true	Final commands:	
Time limit 0			
stop after this n	nany steps (0 = no limit)	Cancel	

Behaviour Space

- http://ccl.northwestern.edu/netlogo/2.0/docs/behaviors pace.html
- The user defines a set of parameter value sequences.
- The parameters sequences are typically associated with slider values and other interface components.
- The behaviour space sweeps accross all the combinations of the specified parameter values.
- Configures the model with each parameter combination.

Behaviour Space: parameter sweeps

- Single value: ["population" 2500]
- Multiple values: ["population" 1 2 3 100 200]
- Sequence: ["population" [1 10 100]] (from 1 to 100 with increments of 10)
- You can define a parameter sweep in each line, the behaviour space will then combine all the values from the multiple parameters.
- Note: the parameters you do not assign to a sweep in the behaviour space remain with the value given in the interface.

Behaviour Space: measuring models

- You can specify how the model is measured by stating what reporters will be applied to the model.
- You can also specify if the simulation is measured step by step or just at the end.
- **Tip:** to compute a simple average, **don't** configure behaviour space to call the reporter in every step, accumulate the value and report the results at the end.

Designing Experiments

• Large parameter spaces can lead to infeasible simulation batches.

- To design a parameter space you should:
 - Explore the model first.
 - Reflect upon what questions do you want to answer.
 - Configure the behaviour space to explore "interesting" parameter domains.

Interesting tools for parameter exploration

• MEME: model exploration module http://mass.aitia.ai/downloads/meme-material

 Simulation model experiment description and communication: Opening the 'Black Box' of Simulations:

"Transparency of Simulation Models and Effective Results Reports Through the Systematic Design of Experiments" (Lorscheid 2011)

Behaviour Space Exercise

• Create a simple batch experiment for your segregation model.

• Output the results to a .csv file

• Observe the produced output and confirm if the simulation runs produced the intended results.

Next Session...

- The importance of social spaces.
- Discrete, continuous, networks and other abstractions.
- Complex social network models.
- Networks in NetLogo: using Links.
- Scale--free network model in NetLogo.