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Resumo

Em simulação social, a estrutura das relações sociais é não só fundamental para a

concepção de cenários de simulação plauśıveis, mas também para a compreensão de

processos de interação guiados por tais estruturas. Cada ator interage em múltiplos

contextos integrados em múltiplas relações que constituem o seu espaço social. Nesta

tese, tomando como base o trabalho prévio acerca de modelos de trocas de contextos

sociais, é estudada a noção de segregação social e seu impacto na disseminação dos

fenómenos através da sociedade. Os agentes não só trocam entre contextos sociais,

levando com eles a sua identidade social única, mas também escolhem os contextos

de acordo com razões pessoais. A noção de segregação entre contextos é aplicada a

um jogo de consensos simples. Neste jogo, os agentes tentam coletivamente alcançar

um consenso sobre uma opinião ou escolha binária que devem fazer. Este trabalho

compreende o desenho e análise de um conjunto de experiências destinadas à ob-

servação da influência de mecanismos de segregação na velocidade de convergência

para um consenso global numa sociedade de agentes. É criado um modelo onde

existe uma abstração de escolha estratégica de vizinhanças (os contextos sociais).

Neste modelo, um conjunto de valores de tolerância associados a cada contexto so-

cial define um limiar para que uma vizinhança seja considerada adequada ou não.

Um agente decide trocar de contexto se o número de vizinhos a adoptar uma esco-

lha contrária à sua esteja acima da tolerância definida para o contexto corrente. Os

resultados do modelo concebido são posteriormente comparados com os resultados

do modelo de troca de contextos previamente desenvolvido.

Neste trabalho, é confirmada a hipótese feita sobre um modelo de troca de contex-

tos desenvolvido anteriormente. A primeira conjetura confirmada é que a formação

de consensos locais ajuda à aceleração da convergência da sociedade para um con-

senso global, especialmente se esses grupos de consenso local tiverem as condições es-

truturais adequadas para serem criados. Uma ideia interessante é que nas condições

certas, as dinâmicas de formação de grupos de consenso podem ser localizadas e

relacionadas com determinadas topologias constrúıdas à custa de várias redes soci-

ais. Este facto é especialmente interessante para o desenvolvimento de estudos de

disseminação de informação em estruturas sociais bem conhecidas como campanhas

poĺıticas ou de marketing em redes sociais on-line.
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As experiências concretizadas sobre o mecanismo de segregação apresentado mos-

traram resultados interessantes. Foi observado que, sob as condições adequadas, a

segregação acelera a convergência para um consenso global. É curioso observar que

este mecanismo não só acelera a velocidade de auto-organização da sociedade de

agentes, mas também é transversal às estruturas sociais utilizadas. Por outras pa-

lavras, o efeito de otimização de convergência para um consenso é observado para

diferentes redes sociais. Ainda mais intrigante é esta otimização se manter mesmo

quando é aumentado o número de relações sociais concomitantes.

Foi ainda verificado que o mecanismo introduzido não altera drasticamente o

comportamento do modelo de troca de contextos anteriormente desenvolvido. Glo-

balmente, as tendências de frequência de troca entre contextos são preservadas

mantendo-se fortemente relacionadas com a probabilidade de trocar de contexto

social (parâmetro integrante do modelo de troca de contextos que define, de forma

abstrata, o tempo que cada agente passa em cada um dos contextos sociais).

Adicionalmente ao modelo de simulação social desenvolvido, foi feita uma recolha

extensa do estado da arte referente a simulação, simulação baseada em agentes e dos

mais recentes avanços em simulação social relacionados com o trabalho desenvolvido.

Para além de métodos e modelos de simulação, foi feita uma recolha de modelos

generativos de redes sociais complexas bem como uma detalhada apresentação de

alguns conceitos base. É feita uma revisão sobre conceitos base de teoria de grafos

e análise de redes sociais. Neste último tópico são inclúıdas algumas das medidas

que podem ser feitas sobre estruturas como redes sociais. Estas são fundamentais

para compreensão dos modelos generativos apresentados.

A concepção de modelos de simulação social requer que um conjunto de com-

ponentes sejam modeladas antes que uma experência possa ser concebida. Estes

componentes não estão normalmente desacoplados dos processos experimentais, o

que cria um problema relativamente à reprodução e reusabilidade de modelos. Para

contribuir com uma solução para este problema, esta tese fornece alguns avanços no

desenvolvimento da b-have workbench. Este é um projecto dedicado à criação de

componentes reutilizáveis para modelos de simulação social. Tais componentes com-

preendem: redes sociais complexas, modelos de agentes, regras comportamentais e

modelos abstractos de ambientes. Estes componentes introduzem uma separação

entre processos de modelação e simulação. O foco do trabalho realizado neste con-

texto, é na criação de modelos de redes sociais complexas posteriormente integradas

no modelo desenvolvido de segregação entre contextos. Para cumprir este objectivo,

foi criada uma API (Application Programming Interface) para permitir a criação

de instâncias de redes sociais em Java, API essa que está integrada no âmbito do

desenvolvimento da plataforma b-have workbench.

Finalmente, este trabalho aborda outro problema da simulação social, a criação
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de uma infra-estrutura adequada para o desenvolvimento e execução de simulações

de uma forma escalável. A exploração de modelos de simulação social baseados em

agentes leva muitas vezes demasiado tempo para que seja obtida uma quantidade

de resultados suficiente para uma análise significativa dos dados gerados. Nesta tese

é feita uma análise do problema e fornecida uma solução que o minimiza utilizando

computação em grelha. Este trabalho fornece uma discussão detalhada acerca de

processos de construção de modelos de simulação social bem como de desenho e

distribuição de experiências utilizando uma grelha de computadores. Esta infra-

estrutura é posteriormente utilizada para a execução experiências sobre o modelo

de simulação social desenvolvido.

Palavras-chave: simulação social, simulação baseada em agentes, redes sociais,

contextos sociais
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Abstract

In social simulation, the structure of the social relations is not only fundamental for

the construction of plausible scenarios, but also important to construct an under-

standing of interaction processes shaped by such structures. Each actor interacts

in multiple social contexts located within multiple social relations that constitute

their social space. In this thesis, we build on previous work about context switching

to study the notion of context segregation. The agents not only switch between

social contexts, carrying with them their unique social identity, but also choose the

contexts according to personal reasons. We apply the notion of context segrega-

tion to a simple game of consensus in which agents try to collectively achieve an

essentially arbitrary consensus. This work comprehends the design and analysis of

a set of experiments towards the understanding of the influence of the segregation

mechanism in the speed of convergence to global consensus, comparing the results

with the previous model of context switching.

Social simulation requires a series of components to be modelled prior to the ex-

periment set-up. These components are usually not decoupled from the experiment

process. This creates a problem of experiment reproduction and model reusability.

To contribute with a solution to this problem, this thesis also provides advances

to the development of the b-have workbench. This is a project dedicated to the

creation of reusable social simulation components such as complex social networks,

agent models, behaviour rules, and environment abstract models. We focus on the

creation of complex social network models and integrate them in our model of con-

text segregation.

An extensive review over the state-of-the-art on simulation methods, agent-based

simulation and social simulation models is also presented in this thesis. Moreover

we have also reviewed a series of generative models for complex network structures

and the basic associated with it. We describe the fundamental background on graph

theory and social network analysis. Within social network analysis, we present a

series of measurements essential for the understanding of the network models here

presented.

Finally, this work tackles another problem in social simulation, the creation of a

proper infrastructure for scalable simulation deployment. The exploration of agent-

based social simulation models often takes too much time to get enough results

for a significant analysis of the data generated. In this thesis, we show how to
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minimise this problem by using grid computing. We provide insights on social

simulation model construction, experiment design and experiment distribution using

a computer grid. The developed infrastructure is then used to deploy the social

simulation model created.

Keywords: social simulation, agent-based simulation, social networks,

social-contexts
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Chapter 1

Introduction

Simulation introduces the possibility of a new way of thinking about social and

economic processes, based on ideas about the emergence of complex behaviour from

relatively simple activities (Simon, 1996). Social simulation arises as a recent area or

research that explores simulation models as a way to obtain a better understanding

of some features of the social world (Gilbert and Troitzsch, 2005).

There is a certain scepticism about the possibility of making social predictions,

based on both the inherent difficulty of doing so and the possibility, peculiar to social

and economic forecasting, that the forecast itself will affect the outcome (Gilbert

and Troitzsch, 2005). Nonetheless, social simulation models are useful, first and fore-

most, to construct conceptual explanations for target modelled phenomena. Models

that closely represent the target phenomena can then be used to create “what if

scenarios”. These are particularly useful, not only to formulate questions about a

problem, but also to answer such questions with a predicted outcome in mind. This

process is particularly useful to areas like policy-making (Murata et al., 2007).

To make plausible explanations about social systems we must create social simu-

lation models that can be validated by real-world phenomena. To accomplish that,

we rely on complex models that mimic real-world structures such as complex social

networks.

This dissertation aims to contribute to the state-of-the-art in social simulation

by creating a model that integrates different social networks as the core component

to model social relations. We consider a simple game of consensus to explore the

properties of our model. In this game, the agents try to achieve an arbitrary global

consensus using a very simple set of interaction rules. The proposed mechanism is

simple enough not only to observe the influence of different social networks in the

outcome of the auto-organisation process, but also to explore different social space

designs with multiple concurrent social contexts (Antunes et al., 2009; Nunes and

Antunes, 2012a).

We build on previous work on context switching mechanisms (Antunes et al.,
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2009) to explore a hypothesis presented in (Antunes et al., 2009). Our conjecture

states that a society of agents converges to consensus more rapidly due to the local

consensus group formation. We explore this hypothesis by introducing a segregation

behaviour in the context switching model. In this model, the agents avoid unde-

sired neighbourhoods within their multiple social context space. They segregate by

avoiding neighbourhoods in which a choice, contrary to their own, is above a given

tolerance value (associated with each social context).

We chose this simple game of consensus because the focus of this work is on the

segregation mechanism itself and not in the game. Our focus is on the dynamics

that segregation introduces when using different network structures to represent

the social space of the simulation model. A more complex game would make the

exploration of segregation and switching dynamics much more difficult.

1.1 Motivation

It is important to understand the influence of different complex social networks in

the construction of social simulation models. Different network models allow us to

construct simulation scenarios with distinct social structural properties. The set of

properties of interest depends on the social process one is trying to model. As the

research work regarding this issue is very limited, we aim to contribute with the

exploration of a social simulation model in which different social structures are used

and compared.

In real social world scenarios, agents interact in multiple complex social relations

with other agents and/or institutions. Each one of these relations may be of different

kind and quality, possessing different topologies and social dynamics. Multi-context

models (Antunes et al., 2009; Nunes and Antunes, 2012a), introduce a framework

to test social context dynamics. We are particularly interested in making observa-

tions on how different social relation topologies influence emergent auto-organisation

processes like the achievement of arbitrary consensus in a society of agents.

Another problem in social simulation is that it suffers often from the lack of

standardisation in what concerns to the conception of simulation models. It is truly

a multi-disciplinary area of research but shamefully the creation of new models tends

to be time consuming. This is due to the lack of clear methodologies and tools to

help in the modelling and simulation processes. We contribute to this problem by

discussing a clear methodology and supplying a set of tools (Nunes and Antunes,

2012b) in the process of conception of our model of context segregation (Nunes and

Antunes, 2012a).

To help researchers to focus on the modelling processes without being absorbed

by technical difficulties of implementation, we propose the definition of a social
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simulation methodology focused on the exploration of the design space of artificial

society structures. To support this methodology we use a workbench (Nunes and

Antunes, 2011) with modules and libraries that support the formal design of the

models to be created. By focusing the model design on complex social networks that

shape the social space, we create adequate models for the study of social processes.

The workbench is intended to support the models by supplying a wide variety of

out-of-the-shelf complex social network models. We aim to collect a state-of-the-art

set of social network models, exposing a set of modelling options to construct social

relation structures and supplying candidates to complement the current range of

algorithms available in the b-have workbench (Nunes and Antunes, 2011).

1.2 Objectives

This dissertation comprises three main objectives. The first and main objective is

to construct a social simulation model building on previous work regarding multi-

context models (Antunes et al., 2008, 2009). The main goal of the model to be

developed is to explore the dynamics introduced by segregation between multiple

social contexts. With this, we also want to model an abstract strategic neighbour-

hood selection, similar to what happens in the social segregation model introduced

by Schelling (Schelling, 1969), considering already existing complex social network

structures as our social environment. By creating this model we want to catalyse

the conditions that allow us to confirm a hypothesis drawn from our previous work

on context switching (Antunes et al., 2009). The hypothesis states that local groups

of consensus within multiple social contexts, contribute to a faster convergence to

global consensus formation. Moreover, we also want to confirm not only that these

groups exist, but also that the way they are formed is strongly influenced by different

social network topologies used to model abstract social relations.

The second objective is to present an extensive review on simulation methods,

agent-based approaches to simulation and social simulation models. We want to give

particular attention to social simulation models that make use of network structures.

We also pretend to review the state-of-the-art generative network models. In order

to create a better understanding of these models, we aim to create an introduction to

some fundamental notions of graph theory and social network analysis. Regarding

the later, the focus should be on the measurements that can be made over network

structures and that promote a clear insight over their properties.

Our final goal is to describe in a formal and informal manner, the way one can

assemble the multiple-context models and distribute experiments over a computer

grid. We want to create an implementation that can then be used in the experiments

over the model constructed in this dissertation. This work aims to reduce the time
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needed to perform exploratory simulations over huge parameter spaces.

1.3 Contributions

In this section, we outline the concrete contributions made in this thesis. These

contributions were presented to the scientific community in several papers subject

to a peer reviewing process and presented in top-level workshops and conferences in

the area.

• This thesis provides an extensive review over simulation methods, agent-based

modelling techniques and social simulation models. We also provide an exten-

sive review over complex network generative models and the theory behind

such structures. To support our discussion, we also present introductory no-

tions on graph theory and social network analysis. In the latter, we present a

set of measurements fundamental for the understanding of our social network

structures. These notions serve as the building blocks used to conceive and

comprehend complex social network models.

• We then contribute to the previous line of work on the b-have workbench

(Nunes and Antunes, 2011):

Davide Nunes, Lúıs Antunes – “Introducing the b-have workbench –

creating reusable components for social simulation experiments”,

7th European Social Simulation Association Conference, ESSA 2011

The advance on this project was the development of an API suitable for social

network model integration in Java-based social simulation environments.

• We present a social simulation environment that allows for the usage of net-

work generation algorithms, a multi-agent system simulation model and the

distribution of experiments in a grid environment. This environment is de-

scribed both formally and informally in what regards to its implementation.

We extended the state-of-the-art by providing an implementation that can

serve as a working example to create similar models.

The work in this context was selected for an oral presentation and published

as a full paper (Nunes and Antunes, 2012b):

Davide Nunes and Luis Antunes - “Parallel Execution Of Social Simu-

lation Models In A Grid Environment”, 13th International Workshop
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on Multi-Agent Based Simulation, MABS 2012

This contribution also serves as a starting point for a future tutorial on various

social simulation platform and grid computation infrastructures.

• We also extend the state-of-the-art by providing a model of context segregation

based on previous work regarding context switching and a set of experiments

that explore the segregation dynamics and its role to the achievement of a

global consensus. The basis for our current work can be found on the follow-

ing publication (Antunes et al., 2009):

Lúıs Antunes, Davide Nunes, Helder Coelho, João Balsa, Paulo Urbano –

“Context Switching versus Context Permeability in Multiple Social

Networks”, 14th Portuguese Conference on Artificial Intelligence, EPIA 2009

The work on the model presented in this thesis was selected for an oral pre-

sentation and published as a full paper (Nunes and Antunes, 2012a):

Davide Nunes and Luis Antunes - “Consensus by segregation - the for-

mation of local consensus within context switching dynamics”, 4th

World Congress on Social Simulation, WCSS 2012, 2012

1.4 Document Structure

This document is organised as follows.

Chapter 1 (Introduction) presents the overview of the work here presented

and summarises the main context of research done in this thesis. We describe our

mains goals and motivations for the construction of a social simulation model of

context segregation based on a complex network structure. We also highlight the

contributions of this thesis for the state-the-art in social simulation.

Chapter 2 (Related Work) presents the related work. This section is divided

in three main sections. In the first section we present a comprehensive overview

over graph theory, social network analysis and complex network models. We then

review simulation techniques and some core concepts present in social simulation,

contextualising the work here presented. Finally we describe the previous work

regarding the definition of social simulation models (Antunes et al., 2008, 2009)

that make use of multiplex social networks to represent multi-dimensional social

spaces. The social simulation model to be developed builds on top of this work and
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aims not only to explore the dynamics of different complex network structures, but

also to serve as a proof-of-concept for the formal model definitions we provide.

Chapter 3 (Model Construction and Deployment) presents the core for-

mal frameworks proposed to define social simulation models and experiments as well

as informal methodologies and model development guidelines. It presents both the

tools used to carry out the prototyping and implementation of the social simulation

model designed. One of the tools described is the b-have workbench project (Nunes

and Antunes, 2011), depicting the state of this project and the contribution for

its continuous development. Finally, we describe how one can improve the model

deployment performance by showing how to use grid computing to do a parallel

exploration of the model parameter space.

Chapter 4 (Exploring Context Switching With Segregation), explores

a model constructed building on (Antunes et al., 2008, 2009). In this chapter,

we compare different social structure model designs and explore the properties of

multiplex social networks in the design of artificial social spaces. We present the

devised model of context segregation and discuss the results of multiple experiments

carried out with this model.

Finally, in chapter 5 (Conclusions) we wrap up, analysing the contribution of

the developed work regarding its importance to social simulation standardisation,

modelling guidelines and overall advances in the state-of-the-art.



Chapter 2

Related Work

In this chapter we discuss some relevant research areas fundamental for the under-

standing of social simulation and modelling and for the usage of complex social net-

works in the conception of models. The sections in this chapter are focused around

the following issues: complex social networks, computational simulation methods,

agent-based approaches to simulation and the recent advances in social simulation

models that make use of social network structures. We also discuss a model that

makes use of multiplex social networks to represent social spaces.

In the complex social network section, we lay out some theoretical foundations on

graph theory, social network analysis (discussing some fundamental measurements

that can be made over networks)and a set of network models that can be used

in social simulation experiments. In the simulation section we present the core

concepts regarding simulation methods and review relevant tools and approaches

to modelling. At the end of this section we present and contextualise some social

simulation models that focus on relevant problems and make use of social network

structures. Finally, we present the model from which the work presented in this

thesis builds on a social simulation multi-agent-based model that uses multiple state

of the art complex social networks to construct a more realistic representation of

the structures present in real social systems.

2.1 Complex Social Networks

The definition of complex network is closely related to the definition of graph in

mathematical literature. A network is a set of nodes, with connections between

them, called edges or links. Perhaps the main difference between a network and

a graph resides in the set of non-trivial properties associated with the former. A

network is essentially an entity represented using graphs but with extra elements

such as time, non-trivial relationships between nodes and links and some behaviour

of nodes and links versus time (Lewis, 2009). Network theory is then built on top

7
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of graph theory (Diestel, 2006). The study of networks in the form of mathematical

graph theory is, in fact, one of the pillars of discrete mathematics. Euler’s celebrated

1735 solution of the Königsberg bridge problem is often cited as the first proper proof

in the theory of networks (Newman, 2003b).

There are plenty of systems taking the form of networks in the world. Examples

include the Internet, the World Wide Web, social networks or other connections

between individuals, organisational networks and networks of business relations be-

tween companies, networks of citations between papers, and many others. These

network systems are intrinsically complex. Complex network research lie at the in-

tersection between graph theory and statistical mechanics (Costa et al., 2007), it is

truly a multi-disciplinary area with contributes from various domains from biology

(de Silva and Stumpf, 2005; Hintze and Adami, 2008) to physics (Deng et al., 2011).

This area provides tools to construct and analyse models that closely relate to real

world structures.

As our main focus is on complex social networks, one must define what makes

them complex. Complexity comes from the non-trivial properties associated with

their structure that often occur in real-world network structures. One example of

these properties is the set of topological features that comprehend the existence of

connection patterns between nodes that are neither purely regular nor purely ran-

dom. Such features include a heavy tail in the degree distribution, a high clustering

coefficient, community structures, and hierarchical structures. These features will

be discussed in the following sections when we describe the state-of-the-art complex

network models. One of the sub-areas of this field of research is Social Network

Analysis (SNA) (Wasserman and Faust, 1994). This area supplies various methods

for the extraction of the described features. The main measurements and high level

property detection methods intrinsic of SNA will also be described in the following

sections.

The study of complex social networks is fundamental for computational sociology

and social simulation. A powerful idea drawn from social sciences is the notion that

individuals are embedded in thick webs of social relations and interactions. As such,

theory of networks yields explanations for social phenomena in a wide variety of dis-

ciplines from psychology to economics. Another fundamental issue is that social

network theory provides an answer to a question that has preoccupied social philos-

ophy since the time of Plato, namely, the problem of social order: how autonomous

individuals can combine to create enduring, functioning societies (Borgatti et al.,

2009).
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2.1.1 Graph Theory and Social Network Analysis

In this section, we present the relevant core concepts regarding graph theory and

social network analysis. These concepts are fundamental to the understanding of

the complex network model properties to be presented in the next section. We

thus present some basic formal definitions regarding graphs which are a good way

of representing network structures and some social network analysis methods, in

particular, relevant measurements that can be made from networks in order to char-

acterise them. We finish by presenting high level property extraction methods, such

as community detection.

Graph Theory Basic Concepts

Networks can be represented using graphs. The reader can find a complete overview

over graph theory in (Diestel, 2006). A graph G can be formally represented as an

ordered pair G = (V,E) where V is the set of all the vertices of the graph and E is

the set of all the edges of the graph. An edge e can then be defined as e ∈ E, where

E ⊆ {{vi, vj} : vi, vj ∈ V }. An edge is characterised by the vertices it connects

and the type of connection (undirected or directed), making the graph respectively

undirected or directed (or digraph). As such, two vertices vi, vj are neighbours if

there is an edge e = (vi, vj) such that vi, vj ∈ V and e is an edge of G. As graphs

can be directed or undirected, we should clearly outline the main difference between

those two types. In a directed graph the order of a pair of nodes that defines an

edge is important, thus, an edge represented by e = (vi, vj) is not the same as

an edge defined by e = (vj, vi). In undirected graphs the order of the vertices is

irrelevant making the two representations the same. We consider complex networks

to be represented as undirected graphs by default as we are only interested in the

underlying structural properties.

The number of neighbours of a vertex v is its degree (also called connectivity)

and can be represented as dG(v) = d(v) = kv.

Another important concept is the concept of a path. A path in a graph G = (V,E)

is as a non-empty graph P = (VP , EP ) with VP ⊆ V and EP ⊆ E. A path in a

graph represents a way to transverse from an origin vertex to a destination vertex by

traversing edges in the graph without repetition of vertices. Formally we can define

a path as an ordered list of edges P = ((v1, v2), (v2, v3), · · · , (vk, vk+1)) where each

vi ∈ VP , v1 is the origin vertex and vk+1 is the destination vertex. The path length

is the number of edges of P (this is |EP |). The shortest path (see figure 2.1(a)) or

graph geodesic between two distinct vertices vi, vj can defined as being a path with

less edges than all the other paths in the graph between those two vertices. The

distance between two nodes can also be defined as the minimum length of the paths

connecting them (the length of a shortest path). The greatest distance between
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any two distinct vertices in a graph G (longest shortest path) is the diameter of G,

in figure 2.1(b) we have an example of a graph with diameter 3. We say a graph

G = (V,E) is connected if a path exists between any two vertices vi, vj belonging to

G.

Finally we have to concept of clique. A clique in an undirected graph is a subset

of its vertices such that every two vertices in the subset are connected by an edge

(see figure 2.1(c)).

(a) Shortest path (b) Graph with diameter = 3 (c) Clique

Figure 2.1: Examples of graph theory concepts

Complex Network Definition

We build on graph theory to define formal complex network models. A network

model M defines a way to construct complex networks using functions that give

rise to specific topologies. We call our vertices nodes and our edges links to make a

distinction between the levels of abstraction of graphs and networks. Such models

can be can be formally defined (see (Lewis, 2009)) as being an entity of the form :

M(t) = (N(t), L(t), F (t), J(t))

where:

t =time, simulated or real

M(t) =network model instance on moment t

N(t) =set of all nodes on moment t

L(t) = set of all links on moment t

F (t) = mapping function that connects node pairs, creating a network topology on

moment t

J(t) = function describing the behaviour of nodes and links over time.
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The component J(t) is left abstract on purpose as it can represent properties

associated with the nodes and links that can vary over time. Such properties vary

from model to model. We use the time component t to describe models of network

evolution. With this, one can represent dynamic network models approximated to

real network systems. The models are used either to generate network structures

with or without relying on empirical data or to help on the understanding of real-

world network formation. We can extract information about the structures conceived

by these models by relying on Social Network Analysis (SNA) measurements. A

quick overview over those measurements is given in the following section.

Network Measurements

We rely on social network analysis methods to analyse and characterise the different

topological properties of complex networks, being those generated by models or

based on real data. This section presents a brief overview over measurements that

can be made over networks. These measurements serve as support to understand

the state-of-the-art complex network models that will later be discussed. For more

detail on this topic, the reader is referred to a survey regarding measurements by

Costa et al. (Costa et al., 2007).

Definition 1 (Degree of a node). The degree of a node ni also called connectivity

of a node and denoted as ki can be defined as the number of the edges connected to

it:

ki =
∑
j

(ni, nj) (2.1)

where (ni, nj) is an edge between the node ni and the node nj. If the network is

directed we have two kinds of degrees, the in degree and the out degree. We define

the in degree of a node ni as the number of edges directed to the node (
∑

j(nj, ni))

and the out degree, as the number of edges directed from the node (
∑

j(ni, nj)).

Definition 2 (Average degree of a network). The average degree of a network 〈k〉
is the average of ki for all the nodes in the network, that is:

〈k〉 =
1

N

∑
i

ki (2.2)

Definition 3 (Betweenness centrality). In networks, the greater the number of paths

in which a node or link participates, the higher its importance for the network. It is

possible to quantify the importance of a node or link u in terms of its betweenness

centrality as following:

Bu =
∑
ij

σ(ni, u, nj)

σ(ni, nj)
(2.3)
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where σ(ni, u, nj) is the number of shortest paths between the nodes ni and nj that

contain the node or link u and σ(ni, nj) is the number of shortest paths between ni

and nj. The sum is conducted between all the pairs of distinct nodes (ni, nj).

Definition 4 (Clustering Coefficient). The clustering coefficient is a measure of

the degree to which nodes in a network tend to cluster together. In most real-

world networks, and in particular social networks, nodes tend to create tightly knit

groups characterised by a relatively high density of links. In real-world networks,

this likelihood tends to be greater than the average probability of a tie randomly

established between two nodes (Watts and Strogatz, 1998; Costa et al., 2007).

This measure quantifies how close the neighbours of a node are to forming a

clique. Duncan J. Watts and Steven Strogatz (Watts and Strogatz, 1998) introduced

the measure in 1998 to determine whether a network is a small-world network.

The local clustering coefficient for a node ni, denoted by Ci, is then given by the

proportion of links between the nodes within its neighbourhood divided by the

number of links that could possibly exist between them. For a network represented

by a directed graph G = (V,E), an edge eij = (ni, ni) is distinct from eji = (nj, ni),

and therefore for each neighbourhood Ni there are ki(ki − 1) links that could exist

among the nodes within the neighbourhood (remember that ki is the total (in +

out) degree of the node). Thus, the local clustering coefficient for directed graph is

given as:

Ci =
|{ejk}|

ki(ki − 1)
: vj, vk ∈ Ni, ejk ∈ E (2.4)

For a network represented by an undirected graph we just have to take into

account that an edge eij is the same as eji, as such, the expression to calculate the

local cluster coefficient of the nodes is:

Ci =
2|{ejk}|
ki(ki − 1)

: vj, vk ∈ Ni, ejk ∈ E (2.5)

The cluster coefficient for the whole network represented by the graph G = (V,E)

is defined as the average local cluster coefficients for all the nodes. This is:

〈C〉 =
1

n

n∑
i=1

Ci (2.6)
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Other Network high level traits

Real-world complex networks of actors, more commonly known as social networks,

can exhibit other high level interesting properties. When analysing complex net-

works, researchers tend to focus only on a few properties that seem to be common to

many networks: power-law degree distributions, network transitivity (short average

path length), etc. There are other high level measurements that can be interesting

for discovery and analysis of interesting patterns within social networks one of such

examples is the existence of community structures.

Girvan & Newman (Girvan and Newman, 2002) highlight a property that is

found in many networks, the property of community structure (see figure 2.2), in

which network nodes are joined together in tightly knit groups, between which there

are only looser connections. They proposed a method for detecting such communi-

ties (Girvan and Newman, 2002; Steinhaeuser and Chawla), built around the idea of

using centrality to find community boundaries. The method is meant to be an alter-

native to hierarchical clustering1. Instead of trying to construct a measure that tells

which edges are most central to communities, they focus instead on edges that are

least central, the edges that are most ”between” communities. If a network contains

communities or groups that are only loosely connected by a few intergroup edges,

then all shortest paths between different communities must go along one of these

few edges. Thus, the edges connecting communities will have high edge betweenness.

By removing these edges, the method separates groups from one another and reveals

the underlying community structure of the network. The algorithm they propose

for identifying communities is stated as follows:

1. Calculate the betweenness centrality (see definition 3) for all links in the net-

work.

2. Remove the link with the highest betweenness.

3. Recalculate betweenness for all links affected by the removal.

4. Repeat from step 2 until there are no links to be removed according to a

user-defined threshold.

The result of the algorithm is a graph where each community is isolated from

each other. The removed edges are the edges that connect these communities to

each other.

1Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of
clusters. The strategies can generally be categorised as agglomerative (a bottom-up approach) or
divisive which is a top-down approach (Johnson, 1967).
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Figure 2.2: A schematic representation of a network with
community structures. In this network there are three com-
munities of densely connected nodes.

2.1.2 Complex Network Models

Each complex network or class of complex networks, presents specific topological fea-

tures which characterise its connectivity and the influence on processes that depend

on their topology (Costa et al., 2007). Depending on the network, on the analysis

task and on the processes using the network, a specific set of features may be consid-

ered. We are interested in complex networks especially because real networks have

characteristics which are not explained by uniformly random connectivity. Instead,

networks derived from real data may involve community structure, power law degree

distributions2 and hubs (nodes of a network with a large number of connections),

among other structural features. In this section we shall then describe models of

complex network generation that can help on the construction of real world process

models and measurements that can help us characterise those models. Comparative

analysis of some of the presented models can also be found in (Costa et al., 2007;

Toivonen et al., 2009).

2A power law degree distribution is a distribution of network node degrees that follows a power
law. A power lay exists when the frequency of an event (in this case the quantity of nodes with
a given degree) varies as a power of some attribute of that event (such as the size of a network).
Scale-free networks degree distribution follow a power law (Barabási and Albert, 1999).
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Erdös-Rényi Random Graphs

Erdös-Rényi random graphs can be considered the most basic models of complex

networks described in (Erdős and Rényi, 1959). These models generate random

graphs consisting of N vertices and M edges. Starting with N disconnected vertices,

the network is constructed by the addition of M edges at random, avoiding multiple

and self connections. Another similar model defines N vertices and a probability p

of connecting each pair of vertices (see figure 2.3 as an example). The latter model

is widely known as Erdös-Rényi (ER) model.

For the ER model, in the large network size limit N −→∞, the average number

of connections of each vertex 〈k〉, given by:

〈k〉 = p(N − 1) (2.7)

diverges if p is fixed. Instead, p is chosen as a function of N to keep 〈k〉 fixed:

p =
〈k〉

(N − 1)
(2.8)

For this model, P (k) (the degree distribution) is a binomial distribution (see fig-

ure 2.3). For large random networks the distribution is Poisson. This distribution

can be derived as a limiting case to the binomial distribution as the number of nodes

goes to infinity and the attachment success is fixed n × p = constant. Therefore

it can be used as an approximation of the binomial distribution if n is sufficiently

large and p is sufficiently small.

Figure 2.3: Average degree distribution over 10 random networks constructed with
an ER model, formed by 10,000 vertices using a probability p = 0.2 (Costa et al.,
2007).

This degree distribution makes the random network a poor approximation to real-

world networks highly skewed degree distributions. On the other hand, the random

graph has many desirable properties, particularly the fact that many features of its

behaviour can be calculated exactly (Newman et al., 2002).
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Watts & Strogatz Small-world Model

The small-world network model proposed by Watts & Strogatz (Watts and Strogatz,

1998) (also reffered as Watts & Strogatz (WS) model) is constructed by rewiring

regular networks to introduce increasing amounts of disorder. These networks can

be highly clustered, like regular lattices, yet have small characteristic path lengths,

like random graphs. They are called small-world by analogy with the small-world

phenomenon (Travers and Milgram, 1969), popularly known as six degrees of sepa-

ration. This phenomena refers to the idea that everyone is on average approximately

six steps away, by way of introduction, from any other person on Earth. A structured

overview over the small-world research can be found in (Schnettler, 2009).

Figure 2.4: Random rewiring procedure for interpolating between
a regular ring lattice and a random network (Watts and Strogatz,
1998).

The model constructs the networks by starting from a ring lattice3 with n vertices

and 2k edges per vertex, each edge is then rewired at random with a probability p

(see figure 2.4. This construction allows for the adjustment of the graph between

regularity (p = 0) and disorder (p = 1), and thereby to probe the intermediate

region 0 < p < 1, about which little is known.

The structural properties of this small-world network model are characterised

by their path length L(p) and clustering coefficient C(p), as defined in figure 2.5.

L(p) measures the typical separation between two vertices in the graph (a global

property), whereas C(p) measures the cliquishness of a typical neighbourhood (a

local property). We can see in figure 2.5 that the path length L(p) stays almost as

small as a random graph for a broad interval of p. We can also observe that the

cluster coefficient stays as high as on a lattice except for large values of p. The

rewiring mechanism creates “shortcuts”that reduce the distance not just between

3A regular lattice is a network where each node has the same number of connections. These
networks are constructed by arranging the nodes in a ring and connecting each node to their next
k neighbours.
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Figure 2.5: Characteristic path length L(p) and clustering coeffi-
cient C(p) (normalised by the values L(0), C(0) for a regular lattice)
for the family of randomly rewired graphs described in figure 2.4
in relation to the rewiring probability p. The data showed in the
figure averages 20 random realisations of the rewiring process (see
figure 2.4) with 1000 nodes (Watts and Strogatz, 1998).

pairs of vertices that it connects, but between their immediate neighbourhoods,

neighbourhoods of neighbourhoods and so on. There is a high non-linear influence

on L (average path length) especially for low values of p.

Scale-free Network Models

Barabási Albert Model The Barabási Albert (BA) scale-free model (Barabási

and Albert, 1999) , builds upon the perception of a common property of many large

networks, a scale-free power-law distribution of node connectivity. This feature was

found to be a consequence of two generic mechanisms: networks expand continuously

by the addition of new vertices, and new vertices attach preferentially to sites that

are already well connected.

In the model proposed in (Barabási and Albert, 1999), Barabási and Albert

expose a property of large real networks, independent of the system and the identity

of its constituents. This is, the probability P (k) of two nodes being connected to

each other decays as a power law, following P (k) ∼ k−γ. This result indicates

that large networks self-organise into a scale-free state, a feature unpredicted by the

previous random network models.

Large random networks share the common feature that the distribution of their

local connectivity is free of scale, following a power law for large k with an exponent

γ between 2.1 and 4, which is unexpected within the framework of the existing

network models.

The main contrast one can make with the previously discussed models of ER and

WS is that the probability of finding a highly connected vertex (that is, a large k)
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decreases exponentially with k; thus, vertices with large connectivity are practically

absent. In contrast, the power-law tail characterising P (k) for the networks studied

in this model indicates that highly connected (large k) vertices have a large chance of

occurring, dominating the connectivity. This also means that small-world properties

are also present in this model due to its highly connected nodes also denoted as hubs.

The model proposed by Barabási and Albert in (Barabási and Albert, 1999) is

constructed starting with a small number m0 of vertices. At every step we add a

new vertex with m(6 m0) edges that link the new vertex to m different vertices

already present in the system. To incorporate preferential attachment, we assume

that the probability
∏

that a new vertex will be connected to vertex i depends on

the connectivity k i of that vertex, so that
∏

(ki) = ki∑
j kj

. After t time steps, the

model leads to a random network with t+m0 vertices and m× t edges. The network

evolves into a scale-invariant4 state with the probability that a vertex has k edges,

following a power law with an exponent γ = 2.9± 0.1. Scale invariance is basically

a feature of objects or laws that does not change if scales of length are multiplied

by a common factor. In this case, the scale-free properties of this model are not

disturbed by the number of nodes in the network.

Scale-free networks with adjustable cluster-coefficient We can create net-

works with the properties described in the BA, but considering tunable cluster co-

efficient. A model capable of achieving this is presented in (Herrera and Zufiria,

2011). The model generates scale-free networks by growing a scheme which employs

random walks as a local approximation to the preferential attachment criterion.

Fitness-Based Model for Complex Networks Other interesting variation of

the BA model is a fitness-based network model (described in (Fan, 2005)) that uses

a “better-get-richer”instead of “richer-get-richer”growth algorithm (the later being

the one used in the BA model).

Flexible Network Models

Structurally Induced Random Graph Model The Structurally Induced Ran-

dom Graph (SIRG) model, described in (Conway, 2009) means to compensate for

a shortcoming of the previously described models, which is the assumption that

vertices exist in a vacuum, bringing no exogenous structure to the network system

and only forming endogenous structure once inside a network. The model tries to

overcome this limitation by imposing some structure for nodes entering a network.

4Scale invariance is a feature of objects or laws that does not change if scales of some variable
are multiplied by a common factor. In this case, scale-free network properties are independent
from network size.
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This structure will likely be similar to structure components already observed in the

network. The network generation process can be stated as follows:

1. Begin with some base structure G of arbitrary size and topology.

2. Given some integer τ > 1, get a set I containing all the single-component

(connected graph) subgraphs i formed by τ vertices.

3. Define S as an ordered n-tuple of the form S = i1, i2, · · · , in ordered by number

of vertices and edges.

4. Define the function c(ik, G) to count the number of subgraph isomorphisms

(see figure 2.6 for an example of isomorphic graphs) of ik ∈ G and generate a

probability distribution over S as defined in equation:

F (ik) =
c(ik, G)∑n
m=1 c(im, G)

(2.9)

This function gives us the probability of some subgraph ik ∈ S being the

next structural component of the graph G by calculating the number of sub-

graph isomorphisms found for ik ∈ G divided by the total number of subgraph

isomorphisms counted ∀i ∈ S.

5. Draw ik from the previously generated probability distribution and add it to

the network structure using a decision rule. This decision rule is denoted R(.)

and is denoted as a mapping R : in → G. This rule must ensure that the new

elements are added according to the network theoretical constructs. It is left

ambiguous as the SIRG is meant to be a framework from which any number

of possible models could be derived.

6. Repeat steps 4 − 5 until the network has grown sufficiently to meet some

termination criteria, for example a desired property being achieved.

1
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Figure 2.6: Example of graph isomorphism. Two objects
are isomorphic if they are indistinguishable given only a
selection of their features. In this case, two isomorphic
graphs have the same edge structure regardless of their
identification labels.
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The rule by which the new structure is added to the current graph G will follow

some kind of fitness according to the the fundamental constructs of G, meaning

that they must be relevant to the structures represented by the base graph. To

determine the next construct of G it is necessary to generate some finite set of

possible realisation of G based on the subgraphs selected from S and the decision

rule for adding that structure. The most fitted graph is then selected from that set.

This model has an interesting characteristic that makes is very appropriate for

the work here presented. One can use it to grow previously generated networks to-

wards desirable properties. An example of such growth is presented in the figure 2.7.

(a) SIRG base Structure (b) Resulting structure by using the
SIRG model to grow the base structure
in figure 2.7(a) maximising the transi-
tivity.

Figure 2.7: Example of the usage of the SIRG model to grow a base structure 2.7(a)
into a network 2.7(b) according to a desired property, in this case, the maximisation
of transitivity. The τ = 4 vertices and the termination criteria is the number of
vertices n being n ≥ 200) (Conway, 2009).

Generalised random graphs The Generalized Random Graphs (GRG) described

in (Molloy and Reed, 1995) allow for the generation of networks with a given degree

distribution. This aspect is particularly useful for comparison with real networks

with similar characteristics.

The method used to generate this kind of random graph involves selecting a

degree sequence specified by a set {ki} of degrees of the vertices drawn from the

desired distribution P (k). Afterwards, to each vertex it is associated a number ki

of “stubs”(ends of edges emerging from a vertex) according to the desired degree

sequence. Next, pairs of such stubs are selected uniformly and joined together to

form an edge. When all stubs have been used up, a random graph that is a member

of the ensemble of graphs with that degree sequence is obtained. The procedure was

later addressed by Newman et al. (Newman et al., 2002) regarding its application

to real-world social network modelling.
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Tunable Cluster Coefficient and Degree Distribution In (Newman, 2003a),

Newman describes a model of networks with both a tunable degree distribution

and a tunable clustering coefficient. Such models are desirable when we need to

use network structures with values for these properties. Particularly, this becomes

useful when we want to model specific target social systems from which we have

such information just like the previous generalised random graph model.

The model is based on the idea that clustering in networks arises because the

vertices are divided into groups (Ravasz and Barabási, 2003), with a high density of

edges between members of the same group, and hence a high density of triangles,

even though the density of edges in the network as a whole may be low (Newman,

2003a). These structures, also known as communities are commonly found in many

real-world social scenarios.

The model is constructed by considering a network of N individuals divided

into M groups. A social network, for example, might be divided up according to

the location, interests, occupation, and so forth. Individuals can belong to more

than one group, the groups they belong to being chosen at random in the model.

Individuals are not necessarily acquainted with all other members of their groups. If

two individuals belong to the same group then there is a probability p that they are

acquainted and q = 1− p that they are not; if they have no groups in common then

they are not acquainted. In addition to the probability p, the model is parametrised

by two probability distributions: rm is the probability that an individual belongs to

m groups and sn is the probability that a group contains n individuals.

Other Models Of Interest

Another models of interest include:

• a model based on genetic variation in human social networks, presented in

(Fowler et al., 2009).

• models based on social interaction theory that include growth by meeting

strangers and friends of friends (see (Jackson and Rogers, 2007)).

• complex network structures formed by models based on social interaction the-

ory and social distances (Boguñá et al., 2004; Pujol et al., 2005; Jager and

Amblard, 2008).

• models that try to span their topology characteristics, generalising some mod-

els previously presented (Leskovec et al., 2010; Leskovec and Faloutsos, 2007).
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Finally there is a very interesting model that generators networks with a very

particular topology with intrinsic community structures (see section 2.1.1). The

networks generated are based on empirical data of terrorist organisations (Tsvetovat

and Kathleen M. Carley, 2005). These networks are of the most importance as our

aim is to explore different social space structures to be included in social simulation

models. Using these, one can model social systems that have behaviours similar to

those of highly clustered, sparsely distributed organisations. This means that while

large hubs still dominate the network connectivity, the presence of tight clusters

(cells) continues to provide local connectivity if the hubs were to be removed (see

figure 2.8).

Figure 2.8: An illustrative example of a cellular network
approximate topology (Tsvetovat and Kathleen M. Carley,
2005).
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2.2 Computational Simulation, Agent-based ap-

proaches And Social Simulation

In this section we outline simulation techniques and tools, basic concepts of social

simulation and appropriate methods used in this area of research. It shows the power

of some approaches like agent-based social simulation to help on the understanding

of the social simulation model to be later presented. Finally, we describe some social

simulation models that are relevant to our work. The models described encompass

the usage of complex social networks to model social systems and the processes

executed within those topologies. This is relevant to our work especially because we

rely on them to construct our multiplex network structures (Hamill, 2006; Antunes

et al., 2008, 2009) capable of representing the complexity of real multi-dimensional

social spaces.

2.2.1 On Computational Simulation

Simulation can be seen as a technique to represent or abstract a process or behaviour

for analytical, decision support or learning purposes (Pitt, 2008). The technology

boom of the 1990s brought the ability to use models and simulations in nearly

every domain. This technique allows us to better understand human behaviour,

enterprise systems, disease proliferation, etc. In general, it allows us to understand

the behaviour of complex systems by exploring different model and experimental

designs for simulating systems that would be very difficult to manipulate and directly

experiment with in real-life (El Sheikh et al., 2007). One case of such complex

domains is the construction of models for social sciences. The major reason for social

scientists becoming increasingly interested in computer simulation is its potential to

assist in discovery and formalisation of the dynamics within the simulated processes.

Social scientists can build very simple models that focus on some small aspect of the

social world and discover the consequences of their theories in the artificial society

that they have built (Gilbert and Troitzsch, 2005).

It follows that simulation models generally cannot be solved like analytic mod-

els which can be computed by mathematical techniques, like algebra, calculus or

probability theory (Law and Kelton, 2000).

2.2.2 Simulation And Modelling Process

The process of modelling and simulation passes through four phases of a cyclic

movement: modelling, code, execution, and analysis. Each phase depends on a

different set of supporting technologies (Sokolowski and Banks, 2010):

1. modelling phase - modelling technologies;
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2. implementation phase - development technologies;

3. execution phase - computational technologies;

4. analysis phase - data/information technologies;

Figure 2.9: Modelling and simulation cycle and relevant
technologies (Sokolowski and Banks, 2010).

Figure 2.9 illustrates the modelling and simulation phases and their related tech-

nologies. The figure also depicts two processes: the phases used in the development

and testing of computer models and simulations and the phases involved in the

application of simulation and modelling to the investigation of real-world systems.

2.2.3 Simulation Types And Discrete-event Simulation

We can identify three types of general simulation models (El Sheikh et al., 2007;

Sokolowski and Banks, 2010):

1. scale models of the real system;

2. physical system models vs a mathematical representation of the system;

3. a set of mathematical equations and logical relationships;

Within the third type, and when the equations cannot be solved analytically or

numerically, we can use computer simulation models to construct scenarios based

on these mathematical entities.

In this kind of models we can identify two specific types of simulations: dis-

crete and continuous. The continuous simulation models focus on a smooth change

through time while the discrete ones focus on specific events occurring at specific

points in time (El Sheikh et al., 2007). The variables in a simulation model can thus

change in time in the following manner (Pidd, 2004):
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1. Continuously at any point of time: values change smoothly and are accessible

at any point of time;

2. Continuously changing but only at discrete time events: values change smoothly

but only at a predetermined time;

3. Discretely changing at any point of time: state changes are easily identified

but occur at any time;

4. Discretely changing at specific points in time: state changes can only occur at

specific points in time;

The last two cases are often described in the community as discrete-event sim-

ulation which is a simulation where state changes occur in a discrete manner but

possibly at random simulated points in time (Wainer, Gabriel A. and Mosterman,

2010; Schriber and Brunner, 2006).

2.2.4 Agent-based Modelling and Simulation

Agent-Based Modelling and Simulation (ABMS) is a computationally demanding

technique having its origins in discrete event simulation and cellular automata. It is a

powerful technique for simulating dynamic complex systems and observing emergent

behaviour (Allan, 2009). The systems are modelled using autonomous, interacting

agents. ABMS promises to have far-reaching effects on the way that businesses use

computers to support decision-making and researchers use electronic laboratories to

support their research. Some like Axelrod (Axelrod, 1997a), have gone so far as to

contend that ABMS is a third way of doing science besides deductive and inductive

reasoning.

What Is An Agent? There is no universal definition for an agent, but one can

thing of it as a software entity with independent component behaviour that can

range from primitive reactive decision rules to complex adaptive intelligence. A

comprehensive computer science view over the theory of agency can be found in

(Jennings, 2000). From a practical modelling standpoint, we can consider agents to

have certain characteristics (see (Macal and North, 2005)) such as:

• An agent is identifiable, a discrete individual entity with a set of characteristics

and rules governing its behaviours and decision-making capability. Agents

are self-contained. The discreteness requirement implies that an agent has a

boundary and one can easily determine whether something is part of an agent,

not a part of an agent, or a shared characteristic;
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• An agent is situated in an environment. It interacts with it as well as with

other agents. Agents have protocols for interaction with other agents, such as

communication protocols, and the capability to respond to the environment.

Agents have the ability to recognise and distinguish the traits of other agents;

• An agent is goal-directed, having goals to achieve with respect to its be-

haviours;

• An agent is autonomous and self-directed. An agent can function indepen-

dently in its environment and in its dealings with other agents, at least over a

limited range of situations;

• An agent is flexible, and has the ability to learn and adapt its behaviours over

time based on experience. This requires some form of memory. Moreover, an

agent may have the capability for modifying its own behaviour;

The need for Agent-based Modelling We aim to model and analyse social

systems, the phenomena to be addressed are complex in terms of their interdepen-

dencies. This means that the traditional modelling tools may not be as applicable

as they once were. The approach we consider for the work presented in this thesis

is based on multi-agent models.

Agents bring the notion of locality of information together with locality of intent

or purpose. The relation between multi-agent and simulation systems is multi-

faceted. Simulation systems are used to evaluate software agents in virtual dynamic

environments. Agents become part of the model design to represent for instance the

behaviour of human social actors in a context of social simulation (Uhrmacher and

Swartout, 2003).

Discrete-event Agent-based Simulation Agent-based simulation models are

not necessarily separated from the rest of the techniques presented. In (Dubiel and

Tsimhoni, 2005), agent-based modelling is considered a technique suitable to simu-

late the real-time interaction of people with their environment. The approach inte-

grates agent-based modelling with discrete event simulation to simulate the move-

ment of people in a discrete event system. We are interested in this integration to

construct the model presented in this thesis as it provides a good abstraction of

real-world scenarios.

There are numerous tutorials on agent-based modelling and simulation, among

them, (Macal and North, 2005, 2008). There is also a wide range of agent-based

simulation applications that can be found in (Davidsson et al., 2007).
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2.2.5 Agent-based Simulation and Modelling Tools

In this section we describe some simulation tools of interest. Our main focus is on the

tools that allow us to prototype and create agent-based social simulation models. In

particular, we want to integrate complex network structures in our model, as such,

the tools considered should allow for that modelling aspect.

MASON: Multi-Agent Simulator Of Neighbourhoods (MASON) is an extensible,

discrete-event multi-agent simulation toolkit developed in Java (see (Luke et al.,

2005)). It is designed to serve as the basis for a wide range of multi-agent simula-

tion tasks, ranging from swarm robotics to machine learning to social complexity

environments. MASON carefully delineates between model implementation and vi-

sualisation, allowing models to be dynamically attached to visualisers. To create new

models and visualisation schemes one must extend the Java framework provided.

The design appears to have been driven largely by the objectives of maximising

execution speed and ensuring complete reproducibility across hardware. The ability

to detach and re-attach graphical interfaces and to stop a simulation and move it

between computers are considered a priority for long term simulations (Railsback

et al., 2006; Allan, 2009). MASON was not a very mature platform in the past

but it now seems a promising platform with lots of features added recently. This

platform is particularly suitable to the model to be developed in this thesis as it

includes some facilities to deal with social network integration, representation and

analysis.

NetLogo: NetLogo (Wilensky, 1999) clearly reflects its heritage as an educational

tool, as its primary design objective is clearly ease of use even for non-experts in

programming. Its programming language includes many high-level structures and

primitives that greatly reduce programming effort, and extensive documentation

is provided. The language contains many but not all the control and structuring

capabilities of a standard programming language. Furthermore, NetLogo was clearly

designed with a specific type of model in mind: mobile agents acting concurrently on

a grid space with behaviour dominated by local interactions over short times. While

models of this type are easiest to implement in NetLogo, the platform is by no means

limited to them (Railsback et al., 2006; Allan, 2009). It should be stated that, in

spite of its educational context, NetLogo is an excellent tool for quick prototyping

and visualisation of simple simulation models. This is an adequate tool to design

our social segregation model prototype prior to its implementation in a platform

more suited for large-scale experiments.
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Repast: Repast (Collier, 2003) development appears to have been driven by sev-

eral objectives. One of them is the intent to support one domain in particular,

social science. It includes tools specific to this domain. The additional objective

of making it easier for inexperienced users to build models has been approached

in several ways by the Repast project. These approaches include a built-in simple

model, and interfaces through which menus and Python code can be used to begin

model construction (Railsback et al., 2006; Allan, 2009). One interesting thing is

that Repast is one of the few simulation/modelling software systems that supports

the integration of geospatial data out-of-the-shelf (MASON also includes extensions

that supply such functionalities) (see (Crooks, 2007)) which can be useful to create

models when geographical data is available.

2.2.6 On Social Simulation

In this section we describe some important social simulation models as well as ex-

amples of models that make use of complex networks to represent social systems.

Social Simulation and Modelling (SSM) is regarded as the usage of computational

simulation and modelling techniques to the study of human social phenomena, in-

cluding residential segregation (Schelling, 1969), group formation (Desjardins, 2005),

transmission of culture (Axelrod, 1997b), propagation of disease and population dy-

namics (Epstein and Axtell, 1996; Gilbert and Troitzsch, 2005).

The first attempts to apply explicitly, agent-based computer modelling to social

science explicitly are made by Thomas Schelling in a series of papers, “Models of

Segregation”(Schelling, 1969) , “On the Ecology of Micromotives”(Schelling, 1971b)

, “Dynamic Models of Segregation”(Schelling, 1971a) and later in a book “Micromo-

tives Macrobehavior”(Schelling, 1978). In these papers, Schelling anticipated many

themes in the contemporary literature on agent-based modelling, social complexity

and economics. His efforts were constrained by the limited computational power

available at that time. Only in the last decade advances in computing have made

large-scale agent-based modelling practical (Epstein and Axtell, 1996).

The reader is referred to (Epstein and Axtell, 1996; Axelrod, 1997a; Gilbert

and Troitzsch, 2005; Bardón, 2009) for a deeper understanding of social simulation.

Some insights on tools and techniques used in social simulation model construction

can be found in (Suleiman et al., 2000). For agent-based models applied to complex

system modelling and social sciences in particular, one should refer to (Epstein,

1999; Goldspink, 2000; Sansores and Pavón, 2006; Troitzsch, 2009). Finally some

interesting insights regarding the construction of adequate and reliable models to

correctly describe social phenomena are addressed in (Edmonds, 2010).
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2.2.7 Social Simulation Models

In this section we refer to some interesting models that demonstrate the power of

using complex network structures in social simulation. We show some of phenomena

that can be modelled recurring to these structures. We describe models that include:

diffusion processes spreading an innovation or behaviour through a social network

of agents, opinion dynamics and segregation phenomena.

Models of Segregation

Social segregation phenomena refer to the separation of social actors into different

social interaction groups. In (Schelling, 1969, 1971b,a), Schelling devised a simple

spatially distributed model of the composition of neighbourhoods, in which agents

prefer that at least some fraction of their neighbours be of their own “colour”.

He found that even quite colour-blind preferences produced quite segregated neigh-

bourhoods. The model was constructed using a bi-dimensional grid where the agents

interact with local neighbours and relocate according to a value of tolerance to dif-

ferences in colour in the neighbourhood. The results show that segregation occurs

regardless of the order of the agents. Extreme ratios lead to minority forming large

clusters, disrupting majority. Increasing the neighbourhood size considered by the

agents increases segregation.

The model has been revised many times. An example includes (Pancs and

Vriend, 2007), were the robustness of Schelling’s model is analysed, focusing in

its driving force: the individual preferences. This analysis show that even if all indi-

vidual agents have a strict preference for perfect integration, best-response dynamics

may lead to segregation.

In this dissertation, we aim to present a model that integrates a segregation

process over existing network structures. Similar work also includes the adaptation

of the Schelling model to complex social networks (Fagiolo et al., 2007). Although

the essence of segregation is similar, our work is focused on the usage of multi-

ple coexisting social networks to represent the social space. The structures used

to represent social relations are extremely important in multiple-context dynam-

ics (Antunes et al., 2008, 2009). The importance of network topologies along with

segregation phenomena has been reported in (Tassier and Menczer, 2008), where a

model of equality in a labour market is explored.
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Models Of Diffusion over Social Networks

Network structures are fundamental for the representation of diffusion processes.

Social structure provides ways to naturally spread information through its members.

The way some entity spreads through a social system can be modelled very well

through the usage of complex social networks. These networks can represent either

the structure of social relations and roles or concrete infrastructures like on-line

social networks. Understanding the way information spreads through a network is

particularly useful not only in the context of social sciences but also in practical

applications like marketing over real on-line social networks.

As an example of a model of diffusion, one can consider the work in (Nekovee

et al., 2007) which presents a model with a rumour spreading mechanism. Rumours

are an important form of social communications, and their dynamics plays a signifi-

cant role in a variety of human affairs. The spread of rumours can shape the public

opinion in a country, greatly impact financial markets and cause panic in a soci-

ety during wars and epidemic outbreaks. The information content of rumours can

range from simple gossip to advanced propaganda and marketing material (Nekovee

et al., 2007). One could for instance explore such models to study the basis of viral

marketing phenomena. Companies dedicated to this activity often exploit on-line

customer social networks of their customers to promote products.

The model presented in (Kempe and Kleinberg) is another example of a diffusion

model that uses social networks. In this model the problem being studied is the

maximisation of the expected spread of an innovation or behaviour within a social

network, in the presence of “word-of-mouth”referral. In some cases individuals

decisions to purchase a product or adopt an innovation are strongly influenced by

recommendations from their friends and acquaintances. Understanding and getting

a leverage this influence may thus lead to a much larger spread of the innovation

than the traditional view of marketing to individuals in isolation. This study lacks

on the analysis of the topologies of social networks used in the diffusion process.

Different domains present different network structures, the difference in the

topology of the networks may greatly affect the diffusion processes (Antunes et al.,

2008, 2009). As such, it is important to understand the influence of different complex

social network models on this and other processes that make use of such structures.

The work presented in this thesis provides some insights in this area.

Models of Consensus, Auto-organisation and Cooperation

Auto-organisation is the process where a structure or pattern appears in a system

without a central authority or external element imposing it through planning. These

patterns emerge from the local interaction of the elements that make up the system,

thus the organisation is distributed by nature.
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The majority of social simulation models encompass such behaviour. The study

of the dynamics of collective phenomena is desired for models that integrate such

concepts. Vazquez et al. (Vazquez et al., 2009) address such phenomena by dealing

with social consensus. In this work the problem of acquiring a global consensus is

regarded as an auto-organisation phenomenon. This problem is approached from

the perspective of non-linear dynamics of interacting agents in a complex network.

The model construction is based onAxelrod’s model (Axelrod, 1997b) for the dis-

semination of culture. Both Axelrod’s model (Axelrod, 1997b) and Vazquez study

on non-linear dynamics (Vazquez et al., 2009) are very relevant for a deeper under-

standing of similar collective phenomena dynamics such as the ones present in the

model discussed in this thesis.

Another interesting model, described in (Chen et al., 2009), presents an insight

on social tolerance and its role on cooperation. This is relevant to our work as we aim

to construct a model of segregation between social contexts based on thresholds of

social tolerance. In this work, social actors have moderate tolerance toward ambient

cooperative environment. In this environment they tend to avoid unfavourable in-

teractions and search for favourable ones. The focus of the study was on how social

tolerance affects the evolution of cooperation. To address this issue, they present

a model of co-evolutionary prisoner’s dilemma. Although this work is centred in

evolution of cooperation networks which is a little bit different from our proposed

model, it presents an interesting result in which they state that moderate tolerance

thresholds can result in the optimal cooperation levels.

Finally, we address a class of models focused on the dynamics and evolution of

opinions. In (Weisbuch, 2004) a model called bounded confidence model is discussed.

In this model, agents can influence each other’s opinion provided that opinions are

already sufficiently close enough. This work discusses the influence of social networks

topologies on the dynamics of the bounded confidence behaviour.

Other model with similar characteristics to those of opinion dynamics is discussed

in (Castelló et al., 2008). This work presents a model of language competition over

complex social networks is used to study the dynamics of social consensus. The

study is conducted using an agent-based model of competition between two socially

equivalent languages, addressing the role of bilingualism and social structure.

A final interesting model (Rosvall and Sneppen, 2007) analyses the opinion phe-

nomenon from a different perspective. It focus on agents that self-organise a dy-

namic network to facilitate their hunter-gatherer behaviour in information space.

They maintain local opinions about the importance of their neighbours. The results

show that tribal organisations and modular social networks can emerge as a result

of contact-seeking agents that reinforce their beliefs among like-minded. They also

found that prestigious social agents can streamline the social network into hierar-



32 CHAPTER 2

chical structures around themselves. These findings are consistent with some of the

network creation mechanisms previously presented and reinforce their importance.

2.3 Multi-context Model

As discussed previously, some models of multi-agent-based social simulation rep-

resent the social connections between agents with social network structures. The

models described in (Antunes et al., 2008, 2009; Nunes and Antunes, 2012a) are a

step further in modelling methodologies as they consider a multitude of concomitant

social relations. This setting can be seen in a simulation as a n-dimensional sce-

nario where each dimension surface represents a different social relation (see figure

2.10). Agents belong to distinct contexts in these multiple relations. In this line of

work the concepts of context permeability and context switching in social relations

are proposed. These concepts are illustrated using the simulation models in which

agents interact using a simple consensus game. The society of agents has to adopt

a binary “option ”according to a majority rule. The speed of consensus (which is a

good measure for auto-organisation) is observed for different network topologies.

Figure 2.10: Multiplex social network structure forming the so-
cial space for our models of multiple concurrent social contexts.

The models described above are specially adequate because they capture the

notion that different social relations may have different topologies forming a mul-

tiplex network structure (figure 2.10). For clarification purposes we should state

that when we use the term multiplex, like many other concepts in SNA, this appears

to be borrowed from communications theory, which defines multiplex as combining

multiple signals into one to facilitate transmission, in such a way that they can

later be separated as required. We can also conjecture that similar relations will

have more local overlaps between them. Probably the earliest, formal recognition of

multi-dimensionality among relationship was described by Granovetter (Granovetter

et al., 1973), who suggested that “the degree of overlap of two individual’s friendship

networks varies directly with the strength of their tie to one another”. One can also

find an interesting insight on multiple parallel network structures in (Hamill, 2006).

Understanding the structure of social relations has been the focus of the social

sciences. There is a particular interest in understanding how social structures are
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formed and evolve. A social structure is a system of social relations tying distinct

social entities to one another. To construct plausible scenarios in social simulation

models, an understand the basics of social structure theory is desirable. The reader

is referred to (Blau, 1977) for a deeper understanding of the basic building blocks

for social system structure. The concepts illustrated in (Blau, 1977) regarding so-

cial relations, contexts and roles are part of the main idea behind the previously

described models ((Antunes et al., 2008, 2009; Nunes and Antunes, 2012a)).

2.3.1 Context Permeability

Regarding context permeability (Antunes et al., 2008), we can link this concept to

the previously described models of diffusion over social networks. By doing this, one

can easily see the drawbacks of representing the social space using only one layer

with a single network structure. By using the previously discussed network models

with only one dimension, bottlenecks are easily identified within the network topol-

ogy. Such bottlenecks present an obstacle for information diffusion. This can hold

back information spreading phenomena and more importantly, it is harder or even

impossible for a society of agents to achieve global consensus under certain scenarios.

Context permeability states that a social actor is engaged in multiple complex net-

works of social links, and the existence of multiple-modality paths between agents

allow for a permeability between different context topologies. This set-up makes it

possible to overcome bottlenecks and allows for a more efficient fostering of global

consensus.

Figure 2.11 shows an example for an abstract scenario in which two agents can

belong to different social contexts at the same time. Within these kinds of scenarios

we can represent the multiplicity of social roles social actors take into account when

interacting with each other. In real world scenarios, social peers interact at different

levels, sometimes at the same time. For example, two family members can work

together or even belong to the same on-line social network or engage in other con-

comitant social relation. Modelling social spaces with multiple relational planes is

thus a step forward in what concerns to modelling methodologies. The aggregation

of social space into single network structures or abstract bi-dimensional grids can

be sufficient for some models but it is too much simplistic to produce believable

complex social scenarios.
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Figure 2.11: Example of context permeability (Antunes et al.,
2008) considering two contexts for social agent denoted by the
number 1 and 2. In this case, we have a family context and a
work context. What happens in context permeability is that
agents 1 and 2 can be interaction at the same time. This is
possible in real scenarios. As an example, a social actor can
have a social connection which is simultaneously his co-worker
and a family member. In result, an interaction from these two
actors can be affected by the two distinct social contexts in
which they interact.

2.3.2 Context Switching

In the context switching model (Antunes et al., 2009), the society of agents engages

in the same consensus game.

The agents are embedded in multiple relations represented as static social net-

works and they switch contexts (see figure 2.12) with some probability ζCi
associated

with each context Ci. The agents are only active in one context at a time and can

only perform encounters with available neighbours of the current context. We can

think of context switching as a temporary deployment in another place, such as

what happens with temporary immigration.
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Figure 2.12: Example of context switching (Antunes et al.,
2009) considering two contexts for social agent denoted by
the number 1. In this case, these contexts are created by
two distinct physical spaces. Common nodes in both neigh-
bourhoods (like agent 2) represent the same social actor
being able to travel between both distinct contexts, repre-
senting an acquaintance of actor 1 in both of them. The
dashed circle represents the scope of each context.

The behaviour of the agents in this simple model can be described as follows:

1. choose an available neighbour from the current context (neighbourhood of the

network structure where the agent is currently located);

2. check the selected interaction partner current choice and increment the mem-

ory for the number of individuals “seen” with that choice;

3. check for the choice that has the majority and switch to it if the current opinion

differs;

4. switch to a random distinct context Cj (located in another network) with a

probability ζCi
, which is a parameter of the model related to each social context

Ci.

This model presents a way to represent time spent in different contexts in an

abstract manner using the switching probability ζCi
. With this wan can focus on

the temporal component of permeability between contexts. Context switching in-

troduces one notions that has not been explored in the literature so far: the fact

that, although some social contexts can be relatively stable if we consider short to

moderate periods of time, our social peers are not always available at all times and

spend different amounts of time in distinct relations.
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2.4 Summary

In this chapter, we made an extensive review over complex social network models

and the underlying notions of graph theory and social network analysis. We also

discussed related computation simulation methods, agent based approaches and the

most recent advances in social simulation that contemplate the usage of network

structures to construct social space scenarios. Such review did not exist in the

literature and part of our future work will be focused in making it available to the

scientific community.

We have also presented the previous work on multi-context models, introducing

the notions of context permeability and context switching. These models form the

fundamental basis for the model that will be later presented in chapter 4. We chose to

use the simple game of consensus in our models as we are interested in exploring the

mathematical properties of our multi-relational model and the influence of different

network topologies in dissemination processes. With this we want to construct

the basis for a consistent multi-context modelling approach that, although being

currently treated as abstract, can be applied to more complex social scenarios.



Chapter 3

Model Construction and
Deployment

In this chapter we describe formal and informal methodologies used to construct

our model of context segregation. We also give some insight about the tools used in

the model prototyping and development process as well as the methods to explore a

model parameter space using grid computing. Our aim is to create a comprehensive

understanding on how the models and experiments are designed and deployed.

This chapter is organised as follows. In the first section, we cover the tools

used to create the prototype of the model developed in this thesis. The following

section then overviews the b-have workbench project and explain its role in our

experiments. The contribution to this project is also outlined in this section. We

finish by discussing how one can use grid computing to explore social simulation

experiments in a parallel manner. In this final section we discuss, both formally and

informally, the tools used to create our final model of experiments, how this model

is integrated with existing grid computing technologies and what are the expected

performance gains when using such technology.

3.1 Simulation Model Prototyping

In this section we present our prototyping platform. We used NetLogo (Wilensky,

1999) to create a first prototype of our model of social segregation (Nunes and

Antunes, 2012a). The model itself will be presented in detail in the next chapter.

For now, we focus on the tools and the experimental setup itself.

We prototyped our model using this tool as the previous model of context switch-

ing (Antunes et al., 2009) (from which our model derives) was completely designed

in it. With some changes, we constructed a working model incorporating the target

phenomenon of social segregation.

NetLogo is great for prototyping as it allows to quickly build a user interface with

which we can configure our model of experiments. An example of the prototype

37
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model interface can be seen in figure 3.1.

Figure 3.1: NetLogo prototype interface. The buttons, sliders,
combo boxes and toggle buttons can be used to configure the sim-
ulation model. The plots and monitor boxes can be used to display
the simulation measurements.

This interface also allows to quickly visualise the results of simulations. This

provides a quick debugging mechanism through observation and monitoring of the

models behaviour. Our model also used a three-dimensional (3D) view for repre-

senting multiple social layers (see figure 3.2). The population of agents is distributed

throughout all the layers (the number of layers can be configured in the interface).
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Figure 3.2: NetLogo 3D cube view. Each plane represents
an abstract social relation. The current choice of an agent
is represented by its colour. An agent with grey colour is
inactive in the planes in which it is grey.

Each plane on the 3D cube has all the agents in the population although each

agent is only active in one plane on one given moment. Network structures are built

for each social relation. These networks, like in the previous model of context switch-

ing, were constructed with the network models discussed in the previous chapter.

The algorithms for network creation were written in NetLogo.

To compare our models, we used the b-have workbench (to be discussed in the

next section) to create network instances, export them to files and load them both

on the previous model of context switching and our current model of context segrega-

tion. This allowed us to compare the behaviours of both models while ignoring the

variability of the networks being used. This allows for a better debugging process.

We also used these network to compare the prototype model with a final simulation

model written in MASON (Luke et al., 2005).

We used this first mode prototype written in NetLogo to test some modelling ap-

proaches and measurements before the construction of our MASON implementation.

Nonetheless, we made a fully functional, self-contained model instance available1.

The final model implementation in MASON and its deployment on a grid envi-

ronment will be discussed in section 3.3.

1The model prototype can be found at the OpenABM model library:
http://www.openabm.org/model/3081
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3.2 B-have Workbench

The b-have workbench (Nunes and Antunes, 2011) is a tool to create social simulation

components such as social networks (see figure 3.3), agent models, behaviour rules

and environment abstract models. We use it to construct complex network models

that can be stored and exported to be used as components in the model developed

in this thesis.

Social simulation requires a series of components to be modelled prior to the

experiment setup. Such components are not usually decoupled from the experiment

process. This fact creates a series of problems regarding experiment reproduction

and model re-usability. This tools aims to provide a separation of concerns between

modelling and experiment processes. Moreover, the techniques proposed in (Nunes

and Antunes, 2011) present a set of methods to partition various models in simple

components that can be easily combined to create new ones.

Figure 3.3: B-have workbench network generation tool.
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3.2.1 The methodology behind the b-have project

As we are creating components to design social simulation experiments, we de-

fend and adopt the KISS (keep it simple, stupid!”) principle Axelrod (1997a). In

some sense, we can say that Sloman’s design principle starts off from this Sloman

(1993),Sloman (1994). Simplicity and clear definition are then the major properties

to achieve. The components to be created comprise the ability to take more shallow

forms and become increasingly deepened due to their refactoring properties. This

is useful because we can add more complexity to the components as we gain insight

and understanding about the problem at hand. The idea is to explore the design of

agents, interactions, environments, institutions and societies by making the initially

simple particular notion used increasingly more complex, dynamic, and rooted in

consubstantiated facts (see Antunes et al. (2007)).

The methodology behind the b-have workbench comprise then some important

considerations. First of all, we propose that social simulation must incorporate sep-

aration of concerns between the modelling process and the simulation process. The

partition generated between these two processes is very important because it allows

us to decompose very complex models into separated components. Understanding

a given component dynamics is easier than trying to decode the dynamic proper-

ties of a complete model. Second off all, given that the partition of the modelling

space is well implemented, the components themselves must be specified in a clear

and simple way without compromising flexibility or introduce dependence on a spe-

cific social theory, the motivation behind this desired properties are well defined in

Edmonds (2003).

The successful partition of the social models allows us to arrive at better expla-

nations for emergent processes on a given experiment. Moreover, the main rationale

behind the conception of this project is that social scientists should focus on mod-

elling processes rather than implementation issues.

We consider four main components for the clear partition of the social model

space (see figure 3.4). Social networks as the means to represent the boundaries on

the actor relations. Social agent models that comprise all their important properties

while “freezing” every thing else, for the sake of simplicity. Environment models,

which contextualize the agent interaction and help to construct more concise models

of the reality and finally behaviour rules that must be flexible enough to represent

both, changes in the environment, agents and interaction processes considering all

the other components.
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Figure 3.4: B-have workbench architecture overview.

3.2.2 Implementation considerations

To implement the b-have workbench, some considerations were made regarding what

technologies to use and how those technologies provide means to accomplish the main

objectives of the application. First of all, the b-have workbench was implemented

using Java 6. This choice was based on the cross-platform properties of the lan-

guage and easy maintenance. As for performance, virtual machines are becoming

faster each day, so using this language does not bring performance issues in the

computational tasks to be performed.

Using plain old java objects to build a application from scratch could bring

numerous problems into this tool implementation. So, to avoid design problems and

ensure that the tool was easy to extend in the future, the development process was

made using the Netbeans Rich Client Platform framework (see figure 3.3). This way

the tool can continue to grow in an easy and modular fashion.
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3.2.3 B-have Network API

The b-have workbench incorporates a set of network generation algorithms in a

rich-client application (a desktop application). In this thesis we created a Java

API 2 (Application Programming Interface) that allows for the network generation

algorithms to be used with other Java applications. This is useful to integrate the

creation of social networks in frameworks like MASON (Luke et al., 2005) or Repast

(Collier, 2003).

Figure 3.5: UML diagram for the b-have workbench net-
work API basic interface structure.

Figure 3.5 presents a basic UML diagram for the interface structure of the de-

veloped API. This was designed so that the complex network models could be in-

tegrated in other simulation and modelling frameworks. In this thesis, we used the

b-have workbench project in two ways. First, we used the existing application to

pre-generate network models to be used to compare the prototyped model and the

final model of experiments, “freezing”the network structures and focusing on the

rest of the behaviour. This was done to ensure that the behaviour of the prototype

was correctly reproduced in the final model. We then used the developed API to

generate network on-the-fly and deploy them to our model in MASON.

2The developed API can be found at the b-have project website: http://bhaveproject.org
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3.3 Distribution of Social Simulation Models in a

Grid Environment

In the exploration of social simulation models we encounter a common problem which

is deeply related to the analysis of the effects of different parameter combinations.

The problem is that if a model parameter space is big enough, running simulations

over that space is very demanding and takes a huge amount of time. The models

are often executed on a single machine and the runs are executed sequentially. At

most one can have a machine with a processor with multiple cores but the parallel

execution of the simulations over the models is restricted to the number of the cores

a processor has. In this section we show how one can eliminate such a problem by

setting up a simple computer grid using multiple machines.

In this case, a grid is simply a set of loosely coupled networked computers acting

together to perform very large tasks (Nabrzyski et al., 2004).

Considering a single machine as a processing unit, it is easy to see that more

processing units can reduce the time necessary to run through the parameter space

of a social simulation experiment. As an example, if one has ten processing units

available in the grid, these can be used to process ten simulations over a model in

the same time it would took to run a single simulation in a single processing unit,

roughly in one tenth of the time. We say roughly because the performance gain is

not linear (Sutter and Larus, 2005). This is specially true when we deal with grid

systems as we will discuss later. The benefits of using a grid system are clearly

expressed in (Walker, 2009).

When we have models that include a multiplicity of parameters, we want to ex-

plore them and analyse the results over the possible combinations of the parameter

values. For simple models, the problem does not reside in the time consumed in

the execution of a simulation run, but rather in the time consumed on the explo-

ration of sometimes huge parameter spaces. Previously presented tools like NetLogo

(Wilensky, 1999) allow for the execution of multiple runs in a single machine. Al-

though this is an excellent tool for prototyping, it is limited by the number of cores

a machine possesses. Other tools like MASON (Luke et al., 2005) are more efficient

than NetLogo. In this case, MASON is optimised for running in a single thread

efficiently, using one core of a machine (we can however run multiple simulations in

multiple threads just like in NetLogo). We consider the usage of MASON for our

large scale exploratory simulations, as it provides a fast and simple way to construct

social simulation models easy to distribute.

We sustain that simple agent-based social simulation models that normally are

executed on a single machine can benefit from parallel grid computing. In this

section we show how it is possible to reduce the time taken in the exploration of the
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simulation parameter space, executing different parameter configurations in parallel

using a computer grid. To implement this, we use the discrete-event agent-based

framework MASON (Luke et al., 2005) and Java Parallel Processing Framework

(JPPF) (Cohen, 2005). We chose this set-up as both platforms are written in Java,

making them cross-platform and extremely easy to install and use.

3.3.1 Parallel exploration of the parameter space

In this section, we describe how we can explore parameter spaces using a computer

grid. We start by presenting an informal overview over the parallel exploration pro-

cess and then formalise the concepts presented. Finally we present a comprehensive

empirical analysis of the performance gains one can get from the usage of a grid

system to execute social simulation experiments.

Parallel exploration process overview

A grid of computers executes working units called Jobs. Jobs have multiple inde-

pendent tasks that can be executed separately. The job tasks can then be executed

in parallel, by assigning them to different machines in the grid for execution.

So, we have to create agent-based model instances as tasks and create jobs by

coupling multiple model instances (tasks). The next step is to submit the jobs to

the grid and wait for results. Sending a job to the grid will distribute the execution

of the tasks (the model instances) across the available grid machines. All of this is

made using the JPPF framework to be discussed later on.

We can explain the parallel exploration process informally as follows (see figure

3.6):

1. Identify the social simulation experiment parameter space P (set of parameters

considered and the respective domain for each parameter);

2. Take the parameter space and divide it into c unique configurations in which

a configuration is a set of parameter values (one value for each parameter);

3. Construct grid jobs with r tasks. Each task is a configured agent-based model

in which the model parameter values are drawn from the parameter space

configurations. We consider the same configuration for one job, r is then the

number of runs to be executed for each parameter configuration;

4. Submit the jobs to the grid.

5. Collect the results of the different simulation runs. The grid should be consid-

ered as a black box where we submit jobs and collect results when these are

available;
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Figure 3.6: Parameter space parallel exploration process
overview.

We propose the construction of grid jobs with r model instances with the same

parameter configuration, where r is the number of runs we want to execute for each

parameter configuration (as previously described in figure 3.6). This assures that we

are coupling together model instances with the same expected execution time. The

ideal number of jobs to be submitted at the same time to the grid depends on the

machines available, there is no magic number for it as we can have an infinite number

of possible grid configurations. We provide an empirical performance analysis for a

small computer grid to make an assessment of the expected performance, the results

can however be extrapolated for other grid configurations.
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Formalising the parallel exploration process

We can now formally describe the simple parallelism process that can reduce the

time taken in the exploration of social simulation models. One can construct an ex-

periment and distribute its executions over different parameter configurations in the

following manner. Consider an experiment E = (M,P ) where M is an executable

social simulation model and P is the parameter space of the model. The parameter

space P is of the form P = P1 × P2 × . . .× Pn where Pk is the range of all possible

values we want to consider for parameter k.

A model M behaves like a function M : C → M , with C ⊆ P . M behaves

like a function taking a set of parameter values which we will call configuration

C = (v1, v2, . . . , vn) where vk ∈ Pk. The model execution over the configuration

changes the state of this model which we can later analyse to extract results.

We define a grid task as a function Tk : M ×Ck → RTk where M is a simulation

model and Ck is one of the |P | possible configurations of the experiment’s parameter

space P . RTk is an entity representing the results produced by the task equivalent

to executing the M over Ck.

A job is a work unit in a grid composed of tasks and it is defined as Jk =

{Tk1, Tk2, . . . , Tkr}. In this case a set of r tasks with the same configuration.

Consider now a grid G = {gs, g1, g2, . . . , gm} where m is the number of machines

in that grid and gs represents the grid server. We submit a job Jk to a grid server gs,

the grid server automatically decomposes Jk in its elementary r tasks (one task for

each run over the parameter configuration Ck) and distributes each task Tk to each

available machine g ∈ G with g 6= gs, balancing the workload between the different

machines.

A grid job submission can then be denoted as Jφk : Jk× gs → Rk where Jk is the

job being submitted to the grid, gs is a grid server that receives the job submission

and Rk is the set of results produced by executing the Jk job tasks over the same

configuration Ck. In summary a job execution is the computation of r runs over the

same parameter configuration. A job execution is done by submitting it to the grid,

waiting for the task executions and collecting the results.

An experiment E is then distributed by creating a set of jobs J where |J | = |P |,
being |P | the number of configurations present in the parameter space P . From the

total set of jobs J we create a set of |J | job submissions Jφ and execute them to get

our social simulation experiment results.

Performance Gains

The gains in performance one can get from using multiple processing units to execute

instructions in parallel depend on the structure of the system. We can however have

a general idea of how this process works.
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To help us understand the general concept of parallel computation considering

multiple processing units, we can refer to Amdahl’s Law (Hill and Marty, 2008).

Simply put, Amdahl’s Law states that if you enhance a fraction of code f by a

speed-up S, the overall speedup (or performance gain in terms of speed) is:

Speedupenhanced(f, S) =
1

(1− f) + f
S

(3.1)

Note that f is the portion of your code that can be executed in parallel and S is

the speedup ratio analogous to the number of processing units available to distribute

the code execution.

This law has also important corollaries that state that:

• When f is small, optimisations will have little effect.

• As S approaches infinity, speedup is bound by 1/(1− f).

When talking about a computer grid, the concept of speedup enhancement is

similar but we have to take into account that the processing units are not centralised

in the same machine but rather distributed over multiple heterogeneous machines

and connected to the grid server by the means of an existing computer network.

This configuration introduces communication overheads proportional to the number

of machines contained within the grid.

Adding multiple machines would improve the time it takes to deploy a complete

social simulation experiment exploration (as we are adding more processing units

to the system) but adding more machines not only speeds up the exploration of a

social simulation parameter space, but also adds more communication overhead to

the system.

The speedup ratio we get from Amdahl’s Law is an empirical measure of parallel

performance. This can be described more generally as:

Speedupenhanced(S) =
ΘE1

ΘES

(3.2)

where ΘE1 is the time it takes to run an entire experiment on a single processing

unit and ΘES is the time it takes to run an entire experiment on S processing units.

We reduce the time required to execute an entire experiment by running our tasks

in parallel, distributing them across the S processing units.

As an example, consider a simple experiment with a parameter space consisting

of exactly one configuration Ci (which is executed r times). With one parameter

configuration, we perform a job submission Jφi which submits a job Ji with r tasks.

If we consider a task as the most basic unit that can be executed in parallel, we can

say that our experiment can be totally executed in parallel. With S = r we can

execute every task concurrently. We can define our grid as G = {gs, g1, g2, . . . , gr}
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where gs is the grid server and gk is a grid node with 1 ≤ k ≤ r. Given a job

submission, the job leaves the grid when all de tasks are executed. Moreover, the

time it takes to complete a job in the grid is equivalent to the maximum execution

time of the tasks within that job (Epema et al., 2006). To calculate the speedup

from the usage of a grid we then instantiate the terms from equation 3.2 as:

ΘE1 =
r∑

k=1

ΘTik ,∀Tik ∈ Ji (3.3)

ΘES = max(ΘTik), ∀Tik ∈ Ji (3.4)

where ΘE1 is the time we need to execute all the r tasks in a single processor,

ΘES is the time it takes to execute all the tasks in the grid with S processing units

available and ΘTik is the time it takes to execute the task Tik in a single processing

unit.

The expression is not yet complete as we have to take into account the network

communication overheads (as previously described). The overheads considered are:

• the job submission from the client gc to the grid server gs (denoted as Lgcgs);

• the task delivery from the grid server gs to a grid node gn (Lgsgn);

• the task result delivery from a grid node gn to the server gs (Lgngs);

• the result delivery from the server gs to the client gc (Lgsgc).

We can now rewrite the previous term ΘES accordingly as:

ΘES = Lgcgs + ∆L+ Lgsgc (3.5)

with

∆L = max(Lgsgk + ΘTik + Lgkgs) (3.6)

where ΘTik is the time it takes to execute the task Tik at the grid node gk. Note

that each task is executed at exactly one grid node.

Substituting the terms in equation 3.2 we get the speedup enhancement expres-

sion for the execution of a single grid job Ji with r tasks and r processing units

available:

Speedupenhanced(r) =

∑r
k=1 ΘTik

Lgcgs + ∆L+ Lgsgc
,∀Tik ∈ Ji (3.7)
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In summary, the limits for the speedup gains in a given grid are closely related to

the maximum time of execution of each model instance (which may not be constant)

plus the communication overheads of job submission, task distribution and result

collection. To have a better idea on how to analyse the performance of a computer

grid, the reader should refer to (Epema et al., 2006).

Grid Performance Test

To help on the visualisation of the previously discussed grid performance gains, we

perform a simple experiment. We consider the submission of a single job to the grid

and vary the number of tasks within the job. We measure the job execution time

at the client (this time includes the communication overheads) and observe how the

number of tasks being executed at the grid affect the grid performance.

The experiment consists in creating ”dummy” grid tasks that just wait 1000

milliseconds and then terminate. With all the tasks taking exactly one second to be

executed, we submit a single job to the grid assigning an increasing number of tasks

to this job. We use this to analyse the behaviour of the grid for a different numbers

of tasks to be executed in parallel. Each job submission configuration is repeated

for 50 independent runs.

In figure 3.7 we can see the average job execution time in the grid, versus the time

it would take to execute all the job tasks sequentially. The grid used is composed

of two 8-core and seven dual-core computers.

Figure 3.7: Average job execution time (in ms) for dif-
ferent numbers of tasks within this job. Each task takes
exactly 1000 milliseconds to be executed. We measure the
time it takes to execute the job in the grid (in blue) and
also display the time it would take to execute all the tasks
sequentially (in red).
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As we can see in figure 3.7 and 3.8, if a job has few tasks, the execution time does

not improve much. This is due to the load balance done by the grid server. The

grid distributes the tasks in groups to avoid the excess of communication flooding

the grid (which is particularly useful if this grid is a shared resource with multiple

distinct clients submitting jobs at any given time). What this means is that the

grid may choose for example to send a group of four tasks to a machine with only

two processing units. As such, some tasks will be executed sequentially in this case.

In figure 3.8 we can see the speedup ratio observed for this grid. The speedup

is roughly optimal when we maintain 128 tasks in the grid. This experiment is

Figure 3.8: Speedup ratio observed for different numbers of
tasks in a single job submission to a grid with 30 processing
units. These processing units correspond to two 8-core and
seven dual-core computers.

useful to observe the limitations of the grid. This basically dictates that for the

submission of various grid jobs in parallel, with each job containing 50 runs for the

same experiment configuration, the performance would not improve if we submit

more than two / three jobs at the time (for the grid used in this example).

As we discussed previously, when dealing with the performance gains in a grid,

the execution time of a job is bound by the maximum execution time of the tasks

within that job. As the user has to perform multiple runs for each parameter config-

uration, the best approach is to organise the experiment with jobs that correspond

to parameter configurations and tasks that represent runs of such configurations.

Packing multiple runs for the same configuration in the same job is an elegant solu-

tion, as the expected task execution time is similar. Packing different configurations

within the same job could cause situations like a group of very fast executing tasks

being stalled by a long execution task. This is, tasks representing social simulation

models that terminate very fast being stalled by other tasks containing a config-

uration that causes the enclosed model to take much more time to terminate its

execution.
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3.3.2 Combining MASON With JPPF

In this section we briefly describe the two technologies considered for the parallel

execution of simulation runs. We also explain how to combine them. The resulting

platform was the base for our final social simulation model. We used the work here

discussed to conduct our experiments which will be discussed in the next chapter.

JPPF Overview

JPPF (Cohen, 2005), is an open-source, Java-based, framework for parallel comput-

ing. Basically it allows us to construct a grid with no effort. A grid is composed

by one or more grid servers that handle job requests and manage the workload.

Connected to those servers are the grid nodes. These are computers added to the

system in a plug-and-play fashion. Finally, we have the grid clients which create

and submit jobs to the grid servers. This framework provides facilities that enable

us to deployment simple agent-based MASON models to be executed in parallel.

We focus on two basic elements: the first is a self-contained MASON agent-based

model (by self-contained we mean that this model has everything that it needs to

be executed anywhere on the grid once it is configured properly); the second is the

JPPF grid client that allows us to submit a social simulation experiment to the grid.

Self-contained MASON Models

MASON is a multi-agent simulation toolkit designed to support large numbers of

agents efficiently on a single machine (Luke et al., 2005). As MASON models are

fully separated from visualisation, one can easily run a model without the graphical

interface layer. MASON models are written in Java but with special attention to

efficiency issues. This framework is elegant and simple enough to fit the purpose of

this thesis: to show how one can use models that usually run in a single machine

and submit multiple model instances to a grid.

MASON provides two essential building blocks for any model which is a SimState

class that represents the discrete event simulator itself and a Steppable interface

which we extend to create our agents (see figure 3.9). To create a self-contained

simulation model we developed a simple MASON model by extending the referred

building blocks and implement Runnable interface from Java (making the model

suitable for execution in a thread, for instance) putting all the code necessary for

the model to be executed in the ”run” method. Finally, we want this model to be

configurable prior to its deployment to the grid, so we create a method to accomplish

that task and receive all the parameters necessary to the model prior to its execution.

The basic U ML overview over the developed MASON model can be seen in figure

3.9.
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Figure 3.9: UML diagram describing the fundamental el-
ements of the MASON framework. These elements are
encapsulated in a Java Runnable to be submitted as a grid
job, allowing the parallel exploration of social simulation
parameter spaces.

Creating A Grid Client

To submit multiple jobs as described in the previous section we developed a JPPF

grid client experiment runner. The experiment runner performs the following tasks:

1. scan through the parameter space;

2. create multiple MASON model instances with the various parameter values;

3. assign the model instances to grid tasks;

4. construct grid jobs containing those tasks;

5. submit the jobs to the grid;

6. collect the results;

Figure 3.10 shows the UML model for the developed grid client. This diagram

depicts the fundamental elements for a JPPF grid client and how these are combined

with the self-contained MASON model.
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Figure 3.10: UML diagram depicting the fundamental elements that allow
the creation of grid clients and how one can integrate the self-contained
MASON model to submit simulation models as grid jobs.

3.3.3 Contributions

We have shown how one can use MASON and JPPF to take advantage of parallel

computing technology to perform social simulation model parameter exploration.

There is no requirement for advanced knowledge on parallel computing to easily

implement a grid with the resources available. The approach we describe is perhaps

not adequate for very complex agent-based models with need for scalability but it

has proven advantages when dealing with simple exploration approaches.

We have described a simple approach to distribute social simulation experiments,

executing tasks representing runs over the same model configuration in parallel. This

method clusters tasks with similar expected execution times. This minimises the

chances of creating jobs that enclose tasks with a high variance in the task execution

time. Such a phenomenon would lead to jobs containing very fast tasks being stalled

by long execution tasks.

The work presented in this section was selected for an oral presentation and

published as a full paper (Nunes and Antunes, 2012b), after being reviewed by 3

anonymous referees.

Davide Nunes and Luis Antunes - “Parallel Execution Of Social Simulation

Models In A Grid Environment”, 13th International Workshop on Multi-Agent

Based Simulation, MABS 2012



Chapter 4

A Model of Consensus by
Segregation

As discussed in the previous chapters, in social simulation, not only is the structure

of the social relations fundamental for the construction of plausible scenarios, but

also the interaction processes are shaped by such structures. Each actor interacts

in multiple social contexts located within multiple social relations that constitute

their social space. In this chapter, we present a social simulation model to study the

notion of context segregation (Nunes and Antunes, 2012a) by building on previous

work about context switching (Antunes et al., 2009). In the developed model, the

agents not only switch between social contexts, carrying with them their unique

social identity, but also choose the contexts according to personal reasons. We

apply the notion of context segregation to a simple game of consensus in which

agents try to collectively achieve an essentially arbitrary consensus.

By introducing a segregation mechanism in the previous model, we explore the

hypothesis that a society of agents converges to consensus more often and more

rapidly due to local consensus group formation. The agents then avoid undesirable

states of available social contexts. We conducted a set of experiments focused not

only on the understanding of the segregation phenomenon, but also on the usage of

different complex social networks to model abstract social relations and how they

influence segregation.

The difference between context switching and context switching with segregation

is in the change from one context to another. The segregation process introduces

reasons to change whereas the context switching model (Antunes et al., 2009) only

considers the probability of changing.

The chapter is organised as follows. In Section 4.1, we describe the methodology

used to construct the social simulation model, modelling social contexts as social

networks. We then describe the basic mechanism behind the context segregation

model and its usefulness to social simulation. In Section 4.3, we briefly describe

our model of experiments and what it is expected to occur. Finally, we analyse and

55
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discuss the results on the context segregation model exploration and compare them

to previous results of context switching.

4.1 Segregation Model

In (Antunes et al., 2009) it was suggested that the switching mechanism increases

the speed of convergence to the global consensus, due to the formation of local con-

sensus groups that, once formed, continually reinforce the cohesion of its members.

Building on the previous model, we explore a mechanism designed from this hypoth-

esis. Our goal is to analyse its validity. This is done by introducing a segregation

mechanism (Schelling, 1971a, 1969; Nunes and Antunes, 2012a).

Whereas the previous context switching mechanism has only one parameter ζCi
,

which is the probability of switching from a context Ci to another, the new mecha-

nism encompasses a new parameter µCi
, which we call social tolerance of the context

Ci. The social tolerance µCi
depicts the ratio of different opinions that a social agent

tolerates in the context Ci. The mechanism can then be described in the following

manner:

Let Ci be the social context in which a selected social agent is at the moment.

Consider also µCi
as the social tolerance for the context Ci, and ζCi

the probability

of switching from the context Ci to another selected relation.

1. Compute the ratio r of agents present in Ci with a choice opposite from the

current agent’s choice;

2. If r > µCi
(if the ratio is not within the social tolerance of the current context):

switch to a randomly selected social context context Cj (see figure 4.1);

3. Otherwise

switch to context Cj with a probability ζCi
(the probability of switch-

ing from the context Ci to the selected context Cj when the social tolerance

requirements fail).



A MODEL OF CONSENSUS BY SEGREGATION 57

c

a

d

b

c

a

d

b

t + 1 - switching by 
segregation

Context 1
Tolerance: 0.5

Time: t

Context 2
Tolerance: 0.5

Time: t

Figure 4.1: Example of context segregation. Agents inac-
tive at a context are represented in grey. Agent choices are
represented by other colours. At the end of the simulation
iteration t, agent a (currently active at context 1 ) has to
decide whether to switch context or not. The current con-
text for agent a has a tolerance of µC1 = 0.5. As the ratio
of neighbours with an opposite choice is above the toler-
ance threshold, the agent will become active in context 2
(in which the agent is currently inactive) at time t+ 1.

In summary, low levels of tolerance in a social context make agents avoid that

context if the neighbourhood is not in conformity with the agent’s current choice.

High values of tolerance promote the interaction with contexts even if the majority

of the agents in a neighbourhood are not in agreement.

Context switching (Antunes et al., 2009) still plays a role in the dynamics of this

model and contributes to the adjustment of the overall time spent in a social context.

If an agent has a high tolerance level and chooses to stay in a neighbourhood, it

may be still forced to switch out by the switching probability.

4.2 Model of Experiments

The experiments were developed in MASON (Luke et al., 2005) and executed in

a grid environment described in (Nunes and Antunes, 2012b). Each experiment

consists of 30 runs in which 300 agents interact until 3000 cycles pass, or total

consensus is reached. In this set of experiments, our goal is to analyse the influence

of the new parameter (the context tolerance µCi
) in the speed of convergence to

global consensus.
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We spanned the tolerance parameter between two contexts (µCi
, µCj

) from 0 to

1 in intervals of 0.05. We also vary the context switching parameter ζCi
between

three values that were found to be interesting for the context switching mecha-

nism (Antunes et al., 2009). Another source of variability is the network topology

configuration for the various contexts.

In a first set of experiments, we focused on the usage of scale-free networks in two

contexts, exploring the influence of the context tolerance parameter on the speed of

convergence to global consensus. We then observed how different context switching

probabilities affect the outcome of these experiments.

In a second series of experiments, we used different network topologies (scale-free

and regular networks) in the construction of our scenario. We then explored not

only the previously referred parameter variability, but also the consequences of the

interplay between these distinct network shapes in the achievement of consensus.

We then analyse a set of experiments designed to understand the switching dy-

namics throughout a simulation run. We consider fixed tolerance values in an opti-

mal consensus convergence region. We track down the number of agents that switch

contexts using the switching probability, the context tolerance and the agents that

do not switch and observe the switching trends over the course of the simulation.

Finally we vary the number of contexts agents have available and observe how it

affects the convergence speed. We use this to compare the results with our previous

work on context switching (Antunes et al., 2009).

The next section focuses on the details of the results.

4.3 Results and Discussion

In this section, we show how different values for context tolerance affect the speed

of convergence to consensus. We explore the interplay between the switching and

segregation mechanisms and the influence of different network topologies in the

achievement of consensus. We also observe the influence of adding multiple so-

cial contexts to our model, observing its behaviour and comparing the results with

previous work on context switching.

4.3.1 Context Tolerance Analysis

We now analyse and discuss the results on how different values for context tolerance

affect the model behaviour. The next analysis also tries to show how the new

tolerance parameter reacts to different values of switching probability (the parameter

from the previous model (Antunes et al., 2009)).
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Homogeneous social contexts with scale-free networks

In our first set of experiments, we focus on a scenario with two social contexts,

each one with a scale-free network. Figure 4.2 depicts the landscape for the span of

tolerance parameter µCi
for both social contexts, maintaining homogeneous values

of the switching probability ζCi
in both contexts (ζCi

= {0.25, 0.5, 0.75}). The

landscape represents the average number of encounters necessary to achieve global

consensus (100%).

Focusing on the values of tolerance for which the number of encounters is smaller,

we can extract right away a domain for which the tolerance parameter leads the speed

of convergence to be faster. This happens for µCi
∈ [0.2, 0.6].
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(a) Context switching with the values (ζC1
, ζC2

) =
(0.25, 0.25)
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(b) Context switching with the values (ζC1
, ζC2

) =
(0.5, 0.5)
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(c) Context switching with the values (ζC1 , ζC2) =
(0.75, 0.75)

Figure 4.2: Average number of encounters to achieve global
consensus with a context tolerance (µC) span of [0..1] for
two social contexts with scale-free networks and homo-
geneous context switching values for each social context
(ζC1 = ζC2).

Another interesting result is that for smaller context switching values (for exam-

ple (ζC1 , ζC2) = (0.25, 0.25)), although globally the convergence is slowed down, the

described values of moderate tolerance maintain an area of faster convergence. Even

when the tolerance is 0 in one context, the convergence to consensus is still fast if

the other context maintains a value of tolerance between 0.2 and 0.6. The context
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tolerance is actually preserving the speed of convergence from the high instability

caused by high context switching ratios.

Comparing these results with a model with only the context switching, we can see

that the context segregation model actually leads the society of agents to consensus

faster. We can see this by observing the number of encounters for the maximum

tolerance in both contexts. According the segregation mechanism defined in section

4.1, when the tolerance is at its maximum value, only the switching mechanism is

used, as “bad neighbourhoods” are not considered to exist.

In the next set of experiments we vary the context switching parameter and make

it heterogeneous between contexts. Basically we adopt a low value of switching for

one context and a high value of switching for the second. If agents only considered

the context switching mechanism this would imply that they would switch from the

context with the low switching probability less frequently (spending more time in

that context) and spending less time in the context with a high switching value.

Figure 4.3 presents the results for the described heterogeneous configuration. We
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(a) Context switching with
the values (ζC1

, ζC2
) = (0.25, 0.5)
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(b) Context switching with
the values (ζC1

, ζC2
) = (0.25, 0.75)

Figure 4.3: Average number of encounters to achieve global
consensus with a context tolerance (µC) span of [0..1] for
two social contexts with scale-free networks and non homo-
geneous context switching values. One of the social con-
texts has a lower value of switching than the other, we
only present this configuration for one context because the
results are symmetrical in this case.

obverse from figure 4.3 that maintaining a moderate tolerance value is extremely

important in the context from which the agents switch less frequently. In this case

if an agents spends more time in context C1 and switches more frequently from

context C2, the convergence to local consensus achieved in C1 can be delayed if

they choose to stay there with an adverse neighbourhood. This happens because

switching probability ensures that an agent spends more time at that context. In

figure 4.8(a), we also see that very low tolerance values in context C1 do not improve
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the speed of convergence if this has a moderate switching ratio.

It is interesting to observe that on the limit of the heterogeneity ((ζC1 , ζC2) =

(0.25, 0.75)) (see figure 4.3(b)) the lowest values of tolerance for context C1 also help

to maintain optimal speed of convergence. This is coherent with our explanation

for the phenomenon. As the agents switch more frequently from context 2 due to

the switching probability (ζC2 = 0.75), they establish local consensus groups within

context 1 as long as the tolerance value for that context remains proximately within

µCi
≤ 0.6.

Homogeneous social contexts with regular networks

In another set of experiments, we analysed the usage of k-regular networks and how

these affect the segregation mechanism. Although k-regular networks are not very

good representations of real social networks, they provide a good baseline for the

evaluation of our model of multiple social contexts. We think this is the case because

the structure is the same for all the nodes in the network. In these networks. each

node has the same number of connections (2k) which creates an highly clustered

entity. This structure allows us to analyse the contribution of neighbourhood size

for the segregation mechanism.

We first observe the influence of switching in the segregation tolerance response

surface (see figure 4.4).

In figure 4.4 we see that for small values of k (in this case, each one of the

300 agents having 20 neighbours), the values of moderate context tolerance (µC ∈
[0.2, 0.4]) is fundamental for achieving faster consensus with low values of switching

probability ζC = 0.25. When we raise the switching probabilities, the optimal tol-

erance region spans from 0.2 to 0.6 similarly to what happened in the homogeneous

scale-free networks previously discussed. The number of encounters necessary to

reach global consensus in the optimal tolerance region also raises with the switching

probability but not drastically, this was also seen in the previous results for the

scale-free networks 4.2. These results indicate that the segregation mechanism ac-

tuates with similar outcomes independently of the topologies being used. Scale-free

networks require more encounters for consensus as they do not possess the high

clustering features of these regular structures.

Our next experiment consisted in the observation of what would happen when

bigger neighbourhoods are considered. In this case, figure 4.5 shows the results

of such experiment. Here we can see that with larger neighbourhoods (k = 30 and

k = 50) the tolerance parameter does not exert substantial impact in the convergence

to consensus. It is although fundamental to keep the tolerance parameter roughly

above the 0.2 threshold. This happens because large neighbourhoods present a

structure in which low tolerances produce constant switching. This happens because



62 CHAPTER 4

To
le

ra
nc

e 
fo

r 
C

on
te

xt
 1

0.0

0.2

0.4

0.6

0.8
1.0

Tolerance for Context 2
0.0

0.2
0.4

0.6
0.8

1.0

 A
vg. E

ncounters 4000

6000

8000

10000

12000

14000

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 5000 

 5000 

 6000 

 6000 

 7000 

 8
00

0 

 9000 

 10000 

 10000 

 10000 

 11000 

 12000 

 13000 

(a) Context switching with the values
(ζC1 , ζC2) = (0.25, 0.25) and k = 10
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(b) Context switching with the values
(ζC1 , ζC2) = (0.5, 0.5) and k = 10
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(c) Context switching with the values
(ζC1

, ζC2
) = (0.75, 0.75) and k = 10

Figure 4.4: Average number of encounters to achieve global
consensus with a context tolerance (µC) span of [0..1] for
two social contexts with k-regular networks having a small
k value and uniform context switching values for each social
context (ζC1 = ζC2).

there is an high probability of an agent encountering a neighbourhood in which more

than 20% of its neighbours have different choices at the beginning of a simulation.

This does not help the creation of local consensus at an early stage of a simulation as

agents are constantly switching. This phenomenon was observed throughout all our

experiments with homogeneous contexts (same topologies) allowing us to create two

insights. The first is that under certain conditions, there is a minimum tolerance

that agents must respect so that the segregation process is actually beneficial for

the convergence to global consensus. The second, in consequence, being the fact

that, for the optimal consensus regions, the segregation mechanism operates as a

dominant switching strategy early in a simulation and, once the local consensus have

been reached, agents switch less using this process.

Analysing the results of homogeneous k-regular networks with heterogeneous

switching (see figure 4.6), this is, ζC1 6= ζC2 , we can confirm a previously observed

phenomena. In figure 4.6 we can see that similarly to what happened in the scale-free

networks (see figure 4.3), to ensure faster convergence to consensus, we must ensure
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(a) Context switching with the values
(ζC1 , ζC2) = (0.50, 0.50) and k = 10
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(b) Context switching with the values
(ζC1 , ζC2) = (0.50, 0.50) and k = 30

Figure 4.5: Average number of encounters to achieve global
consensus with a context tolerance (µC) span of [0..1] for
two social contexts with regular networks and uniform con-
text switching values for each social context (ζC1 = ζC2 =
0.5). In this experiment, we vary the value of k to observe
the influence of bigger neighbourhoods in the segregation
mechanism. The results for k = 50 are practically identical
to the results for k = 30.
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(a) Context switching with the values
(ζC1

, ζC2
) = (0.25, 0.50) and k = 10
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(b) Context switching with the values
(ζC1

, ζC2
) = (0.25, 0.75) and k = 10

Figure 4.6: Average number of encounters to achieve global
consensus with a context tolerance (µC) span of [0..1] for
two social contexts with k-regular networks having a small
k value and heterogeneous context switching values for each
social context (ζC1 6= ζC2).

that the tolerance for the context from which the agent switches more frequently

has moderate values.

In this case, the tolerance values, (like we observed in the previous experiment

results depicted in figure 4.4) must be superior to a certain value (0.2) to allow for

faster consensus. This is the aspect that differs from the scale-free topologies in what

concerns to the segregation phenomenon. In scale free-networks, higher switching in

one context makes that context tolerance not so relevant if there is another context
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that allows agents to create the local consensus groups.

Heterogeneous social contexts

The second set of experiments involved a configuration of the two social contexts

with heterogeneous networks, that is, each context has a different network topology.

We focused on the interplay between k-regular networks and scale-free networks. As

we previously exposed, regular networks offer an easy way to model highly clustered

populations of agents. For this type of networks each node is connected with 2k other

nodes, where k is a parameter of the generative procedure. We experimented with

k ∈ {10, 30, 50} being these reasonably small, medium, and large neighbourhood

sizes.
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(a) Context switching with
the values (ζC1 , ζC2) = (0.5, 0.5)
and k = 10 for the k-regular network
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(b) Context switching with
the values (ζC1 , ζC2) = (0.5, 0.5)
and k = 30 for the k-regular network
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(c) Context switching with
the values (ζC1 , ζC2) = (0.5, 0.5)
and k = 50 for the k-regular network

Figure 4.7: Average number of encounters to achieve global
consensus with a context tolerance (µC) span of [0..1]
for two social contexts, uniform context switching values
(ζC1 , ζC2) = (0.5, 0.5) and heterogeneous networks (scale-
free and regular, for context 1 and 2 respectively).

Figure 4.7 depicts the effect of having an heterogeneous setup for the social

context networks. A social relation with a k-regular network displays interesting

results when combined with a scale-free network. We see that it is worse to have high
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tolerance in regular networks for a small value of k than for a large one. Note that

for smaller values of k, the neighbourhoods are smaller. Having higher tolerance in

small sized social contexts implies that an agent has higher probability of interacting

with a bad neighbourhood according to its personal choices in a given moment. For

large values of k there is no need to have such a low tolerance value.
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(a) Context switching with
the values (ζC1 , ζC2) = (0.25, 0.75)
and k = 10 for the k-regular network
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(b) Context switching with
the values (ζC1 , ζC2) = (0.25, 0.75)
and k = 30 for the k-regular network
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(c) Context switching with
the values (ζC1

, ζC2
) = (0.25, 0.75)

and k = 50 for the k-regular network

Figure 4.8: Average number of encounters to achieve global
consensus with a context tolerance (µC) span of [0..1] for
two social contexts, heterogeneous context switching values
(ζC1 , ζC2) = (0.25, 0.75) and heterogeneous networks (scale-
free and regular, for context 1 and 2 respectively).

The last interesting results on the combination of scale-networks with k-regular

networks are depicted in figure 4.8. The scale-free network has a context-switching

value of 0.25 and the k-regular 0.75. This means that agents will switch less from

the scale-free network and switch more frequently from the regular network.

We can see that low values of k promote the same effect we described in the

previous figure 4.7, but the unbalance in the switching makes the phenomenon more

evident. Another surprising result was that the landscape presented in figure 4.8 is

very close to the shape of the landscape for homogeneous switching set to (ζC1 , ζC2) =

(0.75, 0.75). What this means is that when combining a regular network with a scale-
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free network, for medium or high levels of switching, very low to moderate values

of tolerance are desirable to foster neighbourhood stability in the regular networks.

For high levels of k, as we have seen before on figure 4.7, higher levels of tolerance

also promote faster convergence.

Comparing the context segregation model with the context switching model (An-

tunes et al., 2009), for moderated values of tolerance, this model outperforms the

former. We have also seen that the interplay between social network structures plays

an important role in context dynamics, this is one of the key points discussed in the

work of Antunes and colleagues (Antunes et al., 2008, 2009) but it is shown to be

more evident in this exploration of the context segregation mechanism.

Although we only chose to analyse the context segregation model with scale-free

and regular networks as the core structure for the abstract social relation structure,

we have experimented with other topologies, also presenting interesting insights

on the dynamics of this model and the influence of segregation processes in the

achievement of global agreement. As an example, when using random networks

(Erdős and Rényi, 1959) it is fundamental to model the social space with other

concurrent social network topologies to avoid social isolation that occurs in this kinds

of structures. Nevertheless, topologies and configurations that were not discussed

in this thesis open up an interesting path for future work.

4.3.2 On Switching Dynamics

In this section, we analyse the results for our experiments regarding the switching

mechanism trends throughout a simulation run. In these experiments we take a fixed

context tolerance value for an optimal consensus convergence region (see figure 4.2).

We then vary the switching probability within the values ζCi
= {0.25, 0.5, 0.75} and

observe how this affects the switching mechanisms during the simulation. The ob-

jective is to observe how the segregation mechanism regulates the context switching

mechanism in order to achieve faster consensus. We also want to analyse the inter-

play between the switching probability from our previous model of context switching

and the segregation strategy throughout a simulation.

Switching Dynamics with scale-free networks

We experimented with two homogeneous scale-free networks, fixing the tolerance

parameter in (µC1 , µC2) = (0.4, 0.4). This is one example of tolerance values within

an optimal consensus convergence region as we can see in figure 4.2 from section

4.3.1.

In figure 4.9 we see that the segregation mechanism is more active at the be-

ginning of the simulation while the neighbourhoods are not yet stable and is taken
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(a) Switching probability (ζC1
, ζC2

) = (0.25, 0.25)

(b) Switching probability (ζC1
, ζC2

) = (0.5, 0.5)

(c) Switching probability (ζC1
, ζC2

) = (0.75, 0.75)

Figure 4.9: Global switching trends depicting the num-
ber of agents choosing segregation, switching probability
or no switching at the end of each interaction throughout
a simulation run. We use scale-free networks in both social
relation planes, homogeneous switching probability values
and 300 agents interact until global consensus is reached.
The tolerance parameter is fixed in (µC1 , µC2) = (0.4, 0.4).
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over by the switching probability. The later acts as the main switching mecha-

nism throughout a simulation. The global behaviour observed is that the number

of agents that switch by segregation decreases more rapidly at the beginning of the

simulation, gradually going down throughout the rest of the simulation. We can

also see that the switching by probability mechanism is not disrupted by the segre-

gation mechanism. The number of agents switching by probability is still strongly

correlated to the switching probability parameter ζC .

(a) Switching probability (ζC1 , ζC2) = (0.75, 0.50)

(b) Switching probability (ζC1
, ζC2

) = (0.75, 0.25)

Figure 4.10: Global switching trends for the context seg-
regation model depicting the number of agents choosing
segregation, switching probability or no switching at the
end of each interaction throughout a simulation run. In
this experiment we use scale-free networks in both social
relation planes, heterogeneous switching probability values
and 300 agents interact until global consensus is reached.
The tolerance parameter is fixed in the optimal region
(µC1 , µC2) = (0.4, 0.4).
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The results for heterogeneous switching probability values (see figure 4.10) are

intriguing. The switching by segregation trend is similar to the previous results

(figure 4.9). For switching probability values of (ζC1 , ζC2) = (0.75, 0.50) (figure

4.10(a)) we see that the number of agents switching by probability and not switching

resembles the trends we see in the previous experiment depicted in figures 4.9(b) and

4.9(c). With a greater disparity in the switching values ((ζC1 , ζC2) = (0.75, 0.25))

we see that the agents choose not to switch as a dominant behaviour. A possible

explanation is that the presence of a context from which the agents switch less

frequently, in conjunction with the moderate tolerance value, creates the necessary

conditions to foster an early convergence in that context. This results can be related

to the discussion of figures 4.3, 4.8 and 4.6.

4.3.3 The influence of multiple social contexts

In this section we discuss a new experiment consisting on adding more social relation

planes to the social space of our model. We use the results to make a comparison

with our previous model of contexts switching (Antunes et al., 2009). We analyse

the results for the scale-free networks. In the context switching model, these show

the worst results in terms of speed of convergence. These models are especially

interesting to us as most of the well known real-world complex network structures

display scale-free properties (Barabási and Albert, 1999; Caci et al., 2011).

In this experiment, we consider the usage of multiple scale-free networks fixing

the tolerance parameters within the optimal region (see figure 4.2). The tolerance

parameter is fixed with the value µC = 0.4. We vary the switching values homoge-

neously across the various contexts to compare our results with the context switching

model.

Table 4.1: The influence of adding more social layers the
achievement of consensus in terms of number of encounters
necessary and using one optimal tolerance value (µC = 0.4)
observed in figure 4.2. In this experiment we used 100
agents to compare the results with the precious model of
context switching.

switching prob.
ζC = .25 ζC = .5 ζC = .75

num. planes avg st dev avg st dev avg st dev

1 - - - - - -
2 3322 1657 2401 1159 2317 1276
3 3514 1722 2812 1557 2966 1845
4 3783 1730 3477 1622 3516 1912
5 4452 2302 4235 2213 5160 3011
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As we can see in table 4.1, our initial conjecture that some tolerance values

create an optimal zone for consensus achievement was confirmed. Adding more

social relation planes to the social space makes so that we need more encounters

to reach global consensus but this increment is not significant. Also, when we only

have a single network in which the agents interact, consensus is never reached. This

was also verified in our previous work (Antunes et al., 2008, 2009).

Table 4.2: Comparison of the number of encounters nec-
essary to achieve consensus between the context switch-
ing (Antunes et al., 2009) and the context segrega-
tion (Nunes and Antunes, 2012a) models with scale-free
networks. In these experiments, 100 agents interact to a
maximum of 3000 cycles. The tolerance parameter for the
segregation model is set to a value of µC = 0.4.

switching prob.
ζC = .25 ζC = .5 ζC = .75

num. planes model avg st dev avg st dev avg st dev

1
segregation - - - - - -
switching - - - - - -

2
segregation 3322 1657 2401 1159 2317 1276
switching 10341 6386 5600 3844 4660 3547

3
segregation 3514 1722 2812 1557 2966 1845
switching 15163 8666 8805 5785 7729 5604

4
segregation 3783 1730 3477 1622 3516 1912
switching 18775 10807 13224 8192 14309 10901

The comparison between the results of simple context switching versus the model

with the segregation mechanisms (see table 4.2) confirms some previously observed

facts and present an interesting insight. In this case, with more social relation

planes available, the segregation mechanism always presents better results than the

simple switching mechanism. This is due to the fact that the switching is no longer

uninformed and the agents switch according to their personal preferences. Switching

from undesirable neighbourhoods, creating a segregation between multiple social

contexts, promotes an early formation of local consensus groups.

We can see that adding more relational planes, not only does not interfere signif-

icantly in the convergence to consensus, but also presents another curious insight:

the fact that the number of encounters observed for the segregation model (although

this requires much less encounters) follow a similar trend to the results for the con-

text switching model, meaning that the original switching mechanism influence is

preserved.
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4.4 Contributions

In this chapter, we showed that not only contexts are important for dissemination

phenomena in structured societies, but also social segregation allows for conver-

gence speed-up of such processes given that the right conditions are met. We built

on previous work regarding context switching to construct our model of context

segregation. We also presented a set of experiments that explored the segregation

dynamics and its role to the achievement of a global consensus. The basis for our

current work can be found on the following publication (Antunes et al., 2009):

Lúıs Antunes, Davide Nunes, Helder Coelho, João Balsa, Paulo Urbano – “Context

Switching versus Context Permeability in Multiple Social Networks”,

14th Portuguese Conference on Artificial Intelligence, EPIA 2009

In this previous work, we showed that context switching promotes faster conver-

gences to consensus in comparison to context permeability (Antunes et al., 2008).

The model of context segregation introduced in this dissertation shows even better

results. Our mechanism of segregation actually regulates the context switching pro-

cess and fosters early consensus group creation. This phenomenon helps to speed

up the dissemination process, achieving a global consensus in less encounters.

Our results showed that social segregation mechanisms not only allows faster

convergence to consensus, but also actuates independently from the different so-

cial structure configurations used in our experiments. Certain tolerance values can

maintain the speed of convergence more or less independent both from the networks

used and model configurations that included a larger number of concomitant social

relations. Moreover, segregation also did not disrupted the existing mechanism of

context switching by probability. We observed that the global switching trend for

this mechanism is still highly correlated to the probability of changing from each

context.

The segregation process here discussed considers that the tolerance values are

fixed for each social context. In real world scenarios, this mechanism can evolve and

the tolerance values can change over time. Even so, we experimented with static

tolerance parameters to understand its influence in the segregation process and the

achievement of consensus. The construction of a model that considers the evolution

of tolerance contextualised with a real world scenario can be an interesting follow-up

for future work.
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The work presented in this section was selected for an oral presentation and

published as a full paper (Nunes and Antunes, 2012a):

Davide Nunes and Luis Antunes - “Consensus by segregation - the forma-

tion of local consensus within context switching dynamics”, 4th World

Congress on Social Simulation, WCSS 2012, 2012



Chapter 5

Conclusions

In this final chapter, we conclude our dissertation by summarising our contributions,

accomplished goals and our major findings.

We start by providing a more detailed summary of the contributions made by

this dissertation, contextualising our findings and achievements. In the following

sections, we reflect upon the possibilities for future work and consider the available

research directions. Finally, we wrap-up and draw some conclusions about the work

developed in this thesis.

5.1 Summary of Contributions

In this section, we summarise the contributions made by this dissertation.

5.1.1 Reviewing the state-of-the-art

This thesis provides an extensive review over simulation methods, agent-based mod-

elling techniques and recent advances in social simulation that contemplate the usage

of network structures to construct social space scenarios. We also provide an ex-

tensive review over complex network generative models and the theory behind such

structures. To support the understanding of these models, we presented introduc-

tory notions on graph theory and social network analysis. These notions serve as the

building blocks used to conceive and comprehend complex social network models.

Our review also included previous work on multi-context models, introducing the

notions of context permeability and context switching.

Although our review on social network models is very extensive, it still lacks a

connection with real-world network systems. Our contribution was important for

social simulation, as the majority of abstract simulation models are focused on the

usage of network generation algorithms, but we still need a bridge that allows for

the models to be instantiated with more concrete scenarios. This connection with

73
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reality can help to understand and contextualise the abstract macro phenomena

observed and avoids the conception of naive explanations for simulation results.

5.1.2 B-have project and simulation infrastructures

Another contribution was the continuous on the b-have workbench (Nunes and An-

tunes, 2011). The advance on this project was the implementation of an API suitable

for social network model integration in Java-based social simulation environments.

The network generated by the API, similarly to the workbench application, can

generate social network structures. In this case, the network generation algorithms

can be integrated in Java-based projects. We used this to include the generative

algorithms in our MASON simulation model. This API also includes basic net-

work export mechanisms, allowing the generated networks to be physically stored.

The stored networks can then be imported by the API and restored to their JAVA

object-based format.

Although this advancement was made in the b-have project, there is still one

problem that needs to be addressed. Since the b-have project does not yet con-

template a fully fledged simulation platform, the integration of the generated com-

ponents in existing platforms is a necessity. This integration is not yet provided

out-of-the-box. The Java API provides a first effort in this direction, nevertheless,

importing other network formats to existing applications should be a priority in the

project and the development of libraries that allow this feature should be done in

the future.

We then presented a social simulation infrastructure (Nunes and Antunes, 2012b)

that allows for the usage of network generation algorithms, a multi-agent system

simulation model and the distribution of experiments in a grid environment. This

environment is described both formally and informally in what regards to its im-

plementation. We combined the MASON simulation platform with our network

generation API to create a simulation model. We then used the JPPF framework to

distribute self-contained simulation models in a computer grid environment. This

approach is particularly useful to the social simulation community as most of the

experiments don’t require the models to be distributed themselves but rather an en-

vironment where the simulation runs can be executed more efficiently. By efficiency

we mean the parallel execution of experiment runs using the available resources,

without putting much effort in the grid configuration itself. With this work, we

extended the state-of-the-art by providing an implementation that can serve as a

working example to create similar models and distribute the experiments using this

technology. Our contribution was presented to the scientific community in (Nunes

and Antunes, 2012b), after being peer-reviewed by 3 anonymous referees and pre-

sented at MABS 2012, a top-level workshop in this area.
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5.1.3 Our model of multiple social relations with segrega-
tion

Finally, we contributed to the advancement of the state-of-the-art by providing a

model of context segregation (Nunes and Antunes, 2012a) based on previous work

on context switching (Antunes et al., 2009) and a set of experiments that explore

the segregation dynamics and its role to the achievement of a global consensus. Our

work provides some interesting insights not only on the new segregation mechanism

but also on our previous work. Our results showed that not only do contexts play an

important role in dissemination phenomena in structured societies, but also social

segregation allows for convergence speed-up of such processes, given that the right

conditions are met. Considering that scale-free networks seem to be present in a

significant amount of real social relations, the mechanism of context switching with

segregation with several concurrent networks can have a decisive role in enhancing

the conditions for achieving global consensus. In the segregation process adopted,

the tolerance values were fixed for each social context. In real world scenarios, this

mechanism can evolve and the tolerance values can change over time. Nonetheless,

this experiment configuration allowed us to understand the segregation influence in

the achievement of consensus.

Considering the interaction behaviour of our agents, this is governed by a simple

binary game of consensus in which agents follow the majority. We choose this simple

game because we are interested in exploring the properties of our multi-relational

model and the influence of different network topologies in dissemination processes

and not really the interaction processes themselves. With this, we constructed and

contextualised the basis for a consistent multi-context modelling approach that, al-

though being currently treated as abstract, has the potential to be applied to more

complex real-world social scenarios. Our results indicated that the segregation mech-

anism provided a regulatory process that speeds up the convergence to consensus

but a clear explanation for this result is still very difficult to find. The question

we should ask in future, is how dependent is the segregation mechanism from the

consensus game used in our experiments. Answering this question can help on the

contextualisation of our work within real-word scenarios and sociological theories

that can support it.

Regarding the network models used in our simulation, one thing that could be

improved is the fact that the network typologies are taken as fixed structures. Social

systems are generally open and agents are free to join and leave the system. One

thing that should be observed is the relationship between network properties and

the dynamic processes that make usage of such structures. This could be achieved

by using models with tunable properties such as clustering coefficient, transitivity,

etc. We found that our segregation mechanism was relatively adaptive to differ-
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ent network configurations, but observing this adaptability with a fine grain can

be fundamental to understand how the mechanism behaves for different network

structures.

The idea that segregation can foster faster auto-organisation can be tracked

down from Schellings’s work on residential segregation (Schelling, 1969, 1971b). We

found that this remains valid in our model of multiple social relations. We were also

curious to find that there are some conditions for segregation that not only help

to foster faster consensus, but also actuate as a control mechanism transversal to

different social structure configurations. With this we mean that under the right

tolerance values for each social context, segregation actually helps to maintain the

speed of convergence more or less independent from the network topologies used.

The convergence speed was also independent from the social space dimension (the

number of social relation planes) considered.

This work was presented in a paper (see (Nunes and Antunes, 2012a)) which was

also peer-reviewed by 3 anonymous referees and presented in WCSS 2012, the most

important world conference in social simulation.

5.2 Future Work

In this section, we discuss the possible future work for the subjects presented in

this thesis. We start by looking at future work regarding our revisions over social

networks and social simulation models. We then overview the research directions

for our model of multiple social relations. We then discuss the needs for simulation

analysis tools and some ideas that could be pursued in this domain. Finally, we

present a possible application for some notions discussed on this thesis. Specifically,

the usage of consensus games and knowledge about social network structures to

construct a multi-agent system capable of extracting contextualised ontologies from

Web documents.

5.2.1 Revision over social network models and social simu-
lation

Our extensive review over network models opens up the possibility for a re-work of

the presented topics into two different state-of-the-art reports. The first report being

a complete revision over social network models. This revision should including not

only the generative models presented in this dissertation, but also the work related

to their application. The second report can be focused on the current state of social

simulation, extending the presented work taking into account real-world scenarios

where these model can be applied. These reports are a natural follow-up of the work
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here presented as we noticed that the literature around these topics is very scarce,

dispersed and incomplete.

In a similar way, our work on social simulation deployment can be further ex-

tended to create a tutorial on grid computing for multi-agent social simulation. This

requires the analysis of different simulation and grid platforms, especially adequate

for social simulation with working examples for each configuration. Also, in this

future work, one thing that should be made clear is what kind of distribution can

be made in a social simulation model and what are the different types of models

according to this target question.

In this dissertation our agents are homogeneously configured and do not possess

cognitive capabilities. This was the case because we were interested in the network

structure properties and the auto-organisation properties of the system rather than

complex agent architectures and decision making processes. Nevertheless cognitive

agents still pose as a problem in social simulation as it is very difficult to create

scalable models that can simulate artificial societies with a large number of agents.

As for the b-have workbench, future work should be focused on following the

design direction presented in (Nunes and Antunes, 2011). As this tool was created

in a modular fashion, the objective is to continue to add some key components

such as more network generation algorithms from the literature and component

export formats. An interesting possibility would be the creation of a Web service

for network generation on demand with the possibility of network model instance

storage and indexation. This would promote the reproducibility of experiments

using networks generated by this service.

5.2.2 Our multi-relational approach to context permeability

For the new model of segregation presented in chapter 4, future work includes the

analysis of the evolution of local consensus groups throughout an experiment, while

tracking down the dynamics of the creation of these groups. To do this, we will

investigate the usage of different segregation measures designed to be applied to

social network structures, similarly to what is done in model presented in (Fagiolo

et al., 2007). This ongoing work also focuses on the analysis of different network

topologies and the comparison of experimental results with phenomena taking place

in real network structures. As we create an understanding of multi-context models,

an interesting line of research would be the composition of the different context

mechanisms into one, more complex model. This would include the notions of: con-

text permeability, switching and segregation (and other possible context dynamics)

and consolidate these notions in a single model, comparing it with a real-world case

study.

Our model of multiple social relations (Antunes et al., 2007, 2009; Nunes and
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Antunes, 2012a) should be the consolidation from a sociological theory point of

view. Although still very abstract, the present work on this multi-relation modelling

methodology should be contextualised within the existing research on social identity

(Ellemers et al., 2002), multiple concomitant social relations, and the embedding of

actors in these structures. Moreover, we should focus on the influence of this context

permeability phenomenon in the perception a social actor forms of its social space

(Roccas and Brewer, 2002) and its importance for other interaction macro processes

such as cooperation (or collusion) (Spagnolo, 1999).

Another interesting idea to further explore our model is the investigation of the

relationship between abstract interaction spaces and the overlaid network of social

relations. The interaction between these components has been suggested in (Nunes

and Antunes, 2011) but has not been further developed. This line of research can

also contribute to the completion of another objective related to the b-have project,

the creation of reusable abstract environment models. The relation between social

interaction and physical space is explored in architecture. Different designs for an

environment can influence how people interact with each other through the social

ordering of space (Shah and Kesan, 2007).

5.2.3 Social simulation analysis tools and methodologies

Analysing a social simulation experiment is often not a trivial task. The need for

analysis tools is a current reality in the social simulation community. Designing ap-

propriate experiments for abstract simulation models becomes extremely difficult,

especially because there are no tools specifically designed to analyse these experi-

ments. Experiment design and result analysis processes thus become dependent on

the experience of the modeller. One idea that follows from our model of multiple

social relations is that the formal conceptual representation of our multiplex social

network structures can represent a leap forward in the construction of the needed

tools.

We propose the creation of an ontology (Gruber, 1993) for multiple social network

scenarios. This promotes clear understanding over our social space model and can

be easily connected to real world scenarios. Moreover, the development of such

ontology can benefit both the semantic web movement and the conception of tools

to analyse social simulation models that make use of such network structures.

An idea that follows is the creation of a simulation ontology and its usage to make

inferences about simulation experiments. This structure should be able to capture

the temporal dimension of a simulation run and help on the discovery of relationships

between simulated events. Ontologies are already applied to describe agent-based

models in social simulation (see (Livet et al., 2010)) but their operationalisation can

be taken further. These ontologies could be embedded in the simulation platforms
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themselves and instantiated with experiment data. The next step would be to

capitalise these structures to construct simulation automated analysis tools.

Finally, a subject that was not discussed in this dissertation was the clear defini-

tion of way the experiments are designed. In this case, our simulation experiments

were designed around the exploration of some key parameters of our model. The way

we design the experiments was based on a clear methodology (see Antunes et al.

(2007)). The idea is to explore the design of agents, interactions, environments,

institutions and societies by using initially simple notions and then increasingly

deepening the simulations in terms of complexity, dynamism, and grounding in sub-

stantiated facts. The experiment design itself was informally exposed and this can

make the task of experiment reproduction slightly less intuitive. In future work, the

formal design of experiments using approaches like Lorscheid et al. (2012). We can

consider another line of work consisting on the development of tools to support this

approach and integrate it with existing simulation platforms.

5.2.4 Applications

Another promising line of research lies on the application of multi-agent systems

and consensus games to domains like the semantic Web movement.

The semantic Web movement promotes the embedding of semantic content into

Web documents. Unfortunately the Web entities do not find enough motivation to

do their part in the construction of a semantically richer Web environment. This

technology has however promising applications in domains like healthcare and life

sciences which have been one of the major promoters behind it, driven by the need of

common research vocabulary and knowledge management applications in healthcare.

A multi-agent adaptive application of context permeability and switching could

be used to build and maintain rich contextual ontologies describing Web resources.

Agent cooperation and social behaviour evolution are keystones for the creation of

such ontologies, which will provide a basis for fostering auto-catalytic developments

and adoption of semantic Web standards. The consensus formation mechanisms dis-

cussed in this dissertation could be capitalised to engineer an efficient solution to the

ontology creation problem, as well as maintenance and updating. Consensus games

and segregation regulatory mechanisms could be applied to create a decentralised

auto-organised system capable of creating small-contextualised ontologies from sets

of documents from which concepts can be extracted.

This system could also capitalise from the fact that web documents are organised

according to scale-free network structures Barabási and Albert (1999). This could

be an interesting starting point to study the relationship between the structure of

Web document hyper-links and conceptual content present in those documents.
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5.3 Conclusion

In this dissertation we made a leap forward in social simulation and modelling

state-of-the-art. We uncovered the dynamics of segregation processes in our model

of multiple social contexts. This process can be seen as an abstraction to strategic

social neighbourhood selection. The segregation mechanism allowed us to validate

an hypothesis created in our previous work on context switching. Models of con-

text switching introduce a temporal component in the interaction processes that

allows global consensus to be reached faster and more often. This is possible due to

the creation of local consensus groups that create reinforced social contexts. These

cohesive context structures are at the basis of faster dissemination in structured so-

cieties. In fact, social segregation mechanisms can not only allow faster convergence

to consensus, but also actuate independently from the different social structure con-

figurations used in our experiments. Certain tolerance values can maintain the speed

of convergence more or less independent both from the networks used and model

configurations that included a larger number of concomitant social relations.

Our findings create research directions that range from the understanding of

social decision-making processes to promising applications in real-world scenarios

involving auto-organisation of dissemination processes.

We still need to conceive an explanation for the regulatory process created by

segregation in the light of sociological theories in order to create an instantiation

of our models with more concrete scenarios. Regarding the concept of permeability

between social contexts, this needs to be tracked down in real scenarios and carefully

categorised. We are just scratching the surface of multi-relational models in social

simulation with the next step being the connection of our model to the reality. This

will allow our results to be validated and explained.
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